Summary

\square There are 3 topics in learning resea

- Understanding human brains
- Developing learning machines
- Clarifying essence of learning mathematically
\square There are 3 types of learning.
- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Topics of unsupervised learning:
- Dimensionality reduction
- Data clustering
- Blind source separation
- Outlier/novelty detection

Dimensionality Reduction

$$
\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}, \quad \boldsymbol{x}_{i} \in \mathbb{R}^{d}, \quad d \gg 1
$$

\square High-dimensional data is too complex to analyze: \longrightarrow "Curse of dimensionality"
\square We want to reduce the dimensionality of the data while preserving the intrinsic "information" in the data.
Dimensionality reduction is also called

- Embedding
- Data visualization (if the dimension is reduced up to 3)

What Kind of "Information" Do We Want to Preserve?

There are several criteria: For example, embed the data such that

- Original data is preserved
- Local structure is maintained
- Interesting components are extracted

Which criterion is the best?
■ It depends on the data, purpose...

Methods to be Dealt With

- Original data is preserved:
- Principal component analysis (PCA)
- Kernel PCA

Local structure is maintained:

- Locality preserving projection
- Laplacian eigenmap embedding
- Interesting components are extracted:
- Projection pursuit
- Non-Gaussian component analysis

Notation

Data: $\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}, \quad \boldsymbol{x}_{i} \in \mathbb{R}^{d}, \quad d \gg 1$
\square Mapping: $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, \quad 1 \leq m \ll d$
(Note: T is generally non-linear)
■ Embedded data: $\left\{\boldsymbol{z}_{i}\right\}_{i=1}^{n}, \quad \boldsymbol{z}_{i}=T \boldsymbol{x}_{i} \in \mathbb{R}^{m}$

Linear embedding

Non-linear embedding

Preserving Original Data

\square We want to embed the data so that embedded data is as "close" to the original data as possible.
$\square d=2, m=1$

$$
\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}=\left\{\binom{0}{1},\binom{0.1}{2},\binom{-0.1}{3}\right\}
$$

- For better description of data, throwing the first element away would be good.
- How about

$$
\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}=\left\{\binom{1}{2},\binom{2}{4.1},\binom{3}{5.9}\right\}
$$

Principal Component Analysis

- Principal component analysis (PCA) tries to automatically find the best description of data.
■Assume
- Mapping $T: \boldsymbol{x}_{i} \longrightarrow \boldsymbol{z}_{i}$ is linear.
- Data is centered:

$$
\boldsymbol{x}_{i} \longleftarrow \boldsymbol{x}_{i}-\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{x}_{j}
$$

Linear mapping is essentially a projection onto a subspace.
■ Find the subspace which best describes data!

PCA Criterion

10
\square Projection: $\widetilde{\boldsymbol{x}}_{i}=\boldsymbol{P} \boldsymbol{x}_{i}$
■"Closeness" :Squared Euclidean distance

$$
\left\|\widetilde{\boldsymbol{x}}_{i}-\boldsymbol{x}_{i}\right\|^{2}
$$

\square PCA criterion:

$$
\min _{\boldsymbol{P} \in \mathcal{P}_{m}}\left[\sum_{i=1}^{n}\left\|\widetilde{\boldsymbol{x}}_{i}-\boldsymbol{x}_{i}\right\|^{2}\right]
$$

$\square \mathcal{P}_{m}$:Set of all orthogonal projection matrices with rank m

How to Obtain Solution

$\square\left\{\boldsymbol{b}_{i}\right\}_{i=1}^{m}$: Orthonormal basis in a subspace

$$
\begin{aligned}
& \boldsymbol{P}=\sum_{i=1}^{m} \boldsymbol{b}_{i} \boldsymbol{b}_{i}^{\top}=\boldsymbol{B}^{\top} \boldsymbol{B} \\
& \boldsymbol{B}=\left(\boldsymbol{b}_{1}\left|\boldsymbol{b}_{2}\right| \cdots \mid \boldsymbol{b}_{m}\right)^{\top}
\end{aligned}
$$

\square PCA criterion is equivalently expressed as

$$
\begin{aligned}
& \boldsymbol{B}_{P C A}=\underset{\boldsymbol{B} \in \mathbb{R}^{m \times d}}{\operatorname{argmin}}\left[J_{P C A}(\boldsymbol{B})\right] \\
& \quad \text { subject to } \boldsymbol{B} \boldsymbol{B}^{\top}=\boldsymbol{I}_{m} \\
& J_{P C A}(\boldsymbol{B})=\sum_{i=1}^{n}\left\|\boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{x}_{i}-\boldsymbol{x}_{i}\right\|^{2}
\end{aligned}
$$

How to Obtain Solution (cont.) ${ }^{12}$

$\square J_{P C A}(\boldsymbol{B})=-\operatorname{tr}\left(\boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{C}\right)+\operatorname{tr}(\boldsymbol{C})$

$$
\boldsymbol{C}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top}
$$

\square PCA criterion is equivalently expressed as

$$
\begin{aligned}
\boldsymbol{B}_{P C A}= & \underset{\boldsymbol{B} \in \mathbb{R}^{m \times d}}{\operatorname{argmax}}\left[\operatorname{tr}\left(\boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{C}\right)\right] \\
& \text { subject to } \boldsymbol{B} \boldsymbol{B}^{\top}=\boldsymbol{I}_{m}
\end{aligned}
$$

Lemma

$\square \boldsymbol{B}: m \times d,(1 \leq m \leq d)$
$\square \boldsymbol{C}: d \times d$, positive, symmetric

- Problem:

$$
\left.\begin{array}{rl}
\boldsymbol{B}_{\text {max }}= & \underset{\boldsymbol{B} \in \mathbb{R}^{m \times d}}{\operatorname{argmax}}[
\end{array} \operatorname{tr}\left(\boldsymbol{B C} \boldsymbol{B}^{\top}\right)\right] \quad \text { subject to } \boldsymbol{B} \boldsymbol{B}^{\top}=\boldsymbol{I}_{m} .
$$

- Solution:

$$
\boldsymbol{B}_{\max }=\left(\boldsymbol{\psi}_{1}\left|\psi_{2}\right| \cdots \mid \psi_{m}\right)^{\top}
$$

$\square\left\{\lambda_{i}, \boldsymbol{\psi}_{i}\right\}_{i=1}^{m}$: Eigenvalues and eigenvectors of $\boldsymbol{C} \boldsymbol{\psi}=\lambda \boldsymbol{\psi}$

$$
\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}\right) \quad\left(\left\langle\boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right\rangle=\delta_{i, j}\right)
$$

Proof

- Lagrangian:

$$
\begin{array}{r}
L(\boldsymbol{B}, \boldsymbol{\Lambda})=\operatorname{tr}\left(\boldsymbol{B C} \boldsymbol{B}^{\top}\right)-\operatorname{tr}\left(\left(\boldsymbol{B} \boldsymbol{B}^{\top}-\boldsymbol{I}\right) \boldsymbol{\Lambda}\right) \\
(\text { Note: } \boldsymbol{\Lambda} \text { is symmetric) }
\end{array}
$$

■ Stationary point:

$$
\frac{\partial L}{\partial \boldsymbol{B}}=2 \boldsymbol{B C}-2 \boldsymbol{\Lambda} \boldsymbol{B}=0
$$

$$
C \boldsymbol{B}^{\top}=\boldsymbol{B}^{\top} \boldsymbol{\Lambda}
$$

$$
\mathcal{R}\left(\boldsymbol{C} \boldsymbol{B}^{\top}\right)=\mathcal{R}\left(\boldsymbol{B}^{\top} \boldsymbol{\Lambda}\right) \subset \mathcal{R}\left(\boldsymbol{B}^{\top}\right)
$$

Proof (cont.)

\[

\]

Proof (cont.)

$\square \boldsymbol{B}^{\top} \boldsymbol{B}$ is the orthogonal projection onto $\operatorname{span}\left(\left\{\boldsymbol{\psi}_{k_{j}}\right\}_{j=1}^{m}\right)$ because

$$
\begin{aligned}
& \left(\boldsymbol{B}^{\top} \boldsymbol{B}\right)^{2}=\boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{B}^{\top} \boldsymbol{B}=\boldsymbol{B}^{\top} \boldsymbol{B} \\
& \left(\boldsymbol{B}^{\top} \boldsymbol{B}\right)^{\top}=\boldsymbol{B}^{\top} \boldsymbol{B}
\end{aligned}
$$

\square Since $\left\{\boldsymbol{\psi}_{k_{j}}\right\}_{j=1}^{m}$ are orthonormal,

$$
\boldsymbol{B}^{\top} \boldsymbol{B}=\sum_{j=1}^{m} \boldsymbol{\psi}_{k_{j}} \boldsymbol{\psi}_{k_{j}}^{\top}
$$

Proof (cont.)

■ Eigendecomposition:

$$
\begin{gathered}
\boldsymbol{C}=\sum_{i=1}^{d} \lambda_{i} \boldsymbol{\psi}_{i} \boldsymbol{\psi}_{i}^{\top} \\
\operatorname{tr}\left(\boldsymbol{B C} \boldsymbol{B}^{\top}\right)=\operatorname{tr}\left(\boldsymbol{C} \boldsymbol{B}^{\top} \boldsymbol{B}\right)=\sum_{j=1}^{m} \lambda_{k_{j}} \\
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \\
\longrightarrow k_{j}=j \text { gives a solution }
\end{gathered}
$$

PCA Embedding

$$
\begin{aligned}
\boldsymbol{B}_{P C A}=\underset{\boldsymbol{B} \in \mathbb{R}^{m \times d}}{\operatorname{argmax}} & {\left[\operatorname{tr}\left(\boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{C}\right)\right] } \\
& \text { subject to } \boldsymbol{B} \boldsymbol{B}^{\top}=\boldsymbol{I}_{m}
\end{aligned}
$$

$\square\left\{\lambda_{i}, \boldsymbol{\psi}_{i}\right\}_{i=1}^{m}$:Eigenvalues and eigenvectors of $\boldsymbol{C} \boldsymbol{\psi}=\lambda \boldsymbol{\psi}$

$$
\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}\right) \quad\left(\left\langle\boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right\rangle=\delta_{i, j}\right)
$$

■ PCA solution:

$$
\boldsymbol{B}_{P C A}=\left(\boldsymbol{\psi}_{1}\left|\psi_{2}\right| \cdots \mid \psi_{m}\right)^{\top}
$$

\square PCA Embedding of a sample \boldsymbol{x}^{\prime} :

$$
\boldsymbol{z}^{\prime}=\boldsymbol{B}_{P C A} \boldsymbol{x}^{\prime}
$$

Examples

Data is well described
\square PCA is intuitive, easy to implement, analytic solution available, and fast.

- However, PCA does not necessarily preserve interesting information such as clusters.

Homework

$\square \boldsymbol{B}: m \times d,(1 \leq m \leq d)$
$\square \boldsymbol{C}, \boldsymbol{D}: d \times d$, positive, symmetric
$\square \boldsymbol{B}_{\text {min }}=\underset{\boldsymbol{B} \in \mathbb{R}^{m \times d}}{\operatorname{argmin}}\left[\operatorname{tr}\left(\boldsymbol{B} \boldsymbol{C} \boldsymbol{B}^{\top}\right)\right] \quad$ subject to $\boldsymbol{B} \boldsymbol{D} \boldsymbol{B}^{\top}=\boldsymbol{I}_{m}$

- Prove:

$$
\boldsymbol{B}_{\text {min }}=\left(\boldsymbol{\psi}_{d-m+1}\left|\boldsymbol{\psi}_{d-m+2}\right| \cdots \mid \boldsymbol{\psi}_{d}\right)^{\top}
$$

$\square\left\{\lambda_{i}, \boldsymbol{\psi}_{i}\right\}_{i=1}^{m}$: Generalized eigenvalues and eigenvectors of $\boldsymbol{C} \boldsymbol{\psi}=\lambda \boldsymbol{D} \psi$

$$
\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}\right) \quad\left(\left\langle\boldsymbol{D} \boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right\rangle=\delta_{i, j}\right)
$$

Homework (cont.)

\square Read the following article for upcoming classes:
■ X. He \& P. Niyogi: Locality preserving projections, In Advances in Neural Information Processing Systems 16, MIT Press, Cambridge, MA, 2004.

