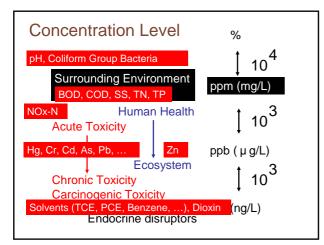
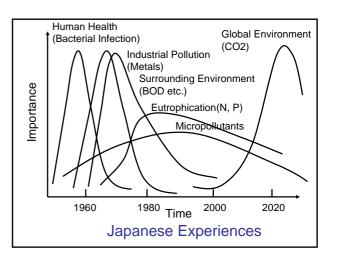
#### Urban Environmental Engineering 1

Taro Urase

#### **BIOGRAPHICAL INFORMATION**


- 1990 B.Eng., Urban Eng., Univ. of Tokyo
- 1995 Dr. of Eng. (Equivalent to Ph.D.) Graduate School of Engineering, Univ. of Tokyo
- 1995 Research Associate of Urban Eng., Univ. of Tokyo
- 1997 Associate Professor, Environmental Science Center, Univ. of Tokyo
- 1999 Associate Professor, Dept. of Civil Engineering, Tokyo Institute of Technology


## **AFFILIATIONS:**

- Japan Society of Civil Engineers
- International Water Association
- The International Solid Waste Association
- Japan Society of Waste Management Experts
- Japan Society on Water Environment
- Membrane Society of Japan
- Japan Society for Environmental Chemistry
- Society of Environmental Science Japan

# Today's Lecture

- Overview of organic pollution and eutrophication
- Organic Pollution (BOD, COD, DO)
  Japanese history
  - Indicators
  - Fundamental equations for concentration change [Streeter Phelps's equation]
- Nutrients (N, P)
  - Indicators
  - Fundamental equations [Vollenweider equation]
  - Stratification and water quality
- Treatment technology





# Environmental quality standards for the protection of human health

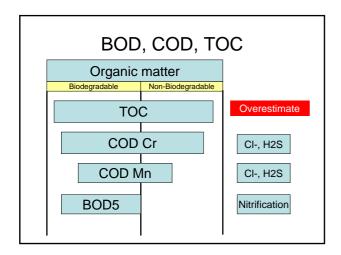
| parameters                                                                                                                                                                                            | standards                                                                              | parameters                                                                                                                                                                                                                | standards                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| cadmium<br>total cyanide<br>lead<br>chromium (VI)<br>arsenic * *<br>total mercury<br>alkyl mercury<br>PCBs<br>dichloromethane<br>carbon tetrachloride<br>1, 2-dichloroethane<br>1, 1-dichloroethylene | 0.01<br>ND.<br>0.05<br>0.01<br>0.005<br>ND.<br>0.02<br>0.002<br>0.002<br>0.004<br>0.02 | clis-1, 2-dichlorosthylene<br>1, 1, 1-tichlorosthane<br>trichlorosthylene<br>tertachlorosthylene<br>tertachlorosthylene<br>tertachlorosthylene<br>(D-D)<br>ttiluram<br>CAT (simazine)<br>thilozene<br>benzene<br>selenium | 0.04<br>1.0<br>0.006<br>0.03<br>0.01<br>0.002<br>0.006<br>0.003<br>0.02<br>0.01<br>0.01 |

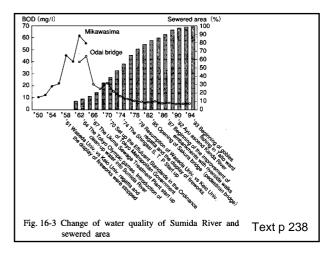
# Environmental quality standards for the protection of living environment

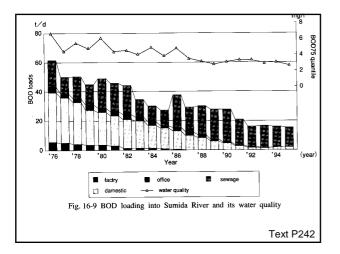
|         |                                                                                       | standards1 |     |     |     |       |
|---------|---------------------------------------------------------------------------------------|------------|-----|-----|-----|-------|
| ategory | water use                                                                             | pН         | BOD | SS  | DO  | CG    |
| AA      | Water supply class 1 ; conservation of natural<br>environment, and uses listed in A-E | 6.5-8.5    | 1   | 25  | 7.5 | 50    |
| Α       | Water supply class 2 ; fishery, class 1 ; bathing<br>and uses listed in B-E           |            | 2   | 25  | 7.5 | 1,000 |
| в       | Water supply class 3 ; fishery, class 2, and uses<br>listed in C-E                    | 6.5-8.5    | 3   | 25  | 5   | 5,000 |
| с       | Fishery class 3 ; industrial water, class I, and<br>uses listed in D-E                | 6.5-8.5    | 5   | 50  | 5   | -     |
| D       | Industrial water class 2 ; agricultural water ;<br>and uses listed in E               | 6.0-8.5    | 8   | 100 | 2   | · —   |
| E       | Industrial water class 3 ; conservation of living<br>environment                      | 6.0-8.5    | 10  | *   | 2   | -     |

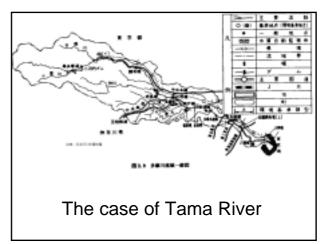
The standard values are dependent on the category of the public waters

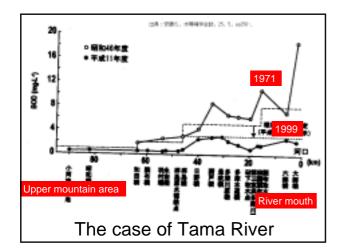
In the case of lakes and in the case of coastal waters, COD is used instead of BOD.


|         |                                                                                                            | standards |     |    |     |       |
|---------|------------------------------------------------------------------------------------------------------------|-----------|-----|----|-----|-------|
| ategory | water use                                                                                                  | pН        | COD | SS | DO  | CG    |
| AA      | Water supply class 1 ; fishery class 1 ;<br>conservation of natural environment, and uses<br>listed in A-C | 6.5-8.5   | 1   | 1  | 7.5 | 50    |
| A       | Water supply classes 2 and 3 ; fishery class 2 ; bathing and uses listed in B-C                            | 6.5-8.5   | 3   | 5  | 7.5 | 1,000 |
| в       | Fishery class 3 ; industrial water class 1 ; agricultural water, and uses listed in C                      | 6.5-8.5   | 5   | 15 | 5   | . –   |
| С       | Industrial water class 2 ; conservation of living<br>environment                                           | 6.0-8.5   | 8   | *  | 2   | -     |

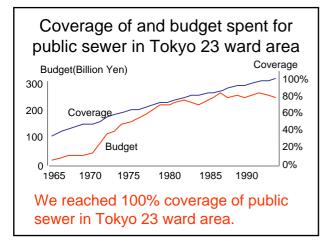

# BOD, COD, TOC


- All of these parameters are related to organic pollution.
- BOD<sub>5</sub> measures the oxygen utilized for the biochemical degradation of organic material.
- COD measures the content of organic matter which can be oxidized by a specified chemical reagent (such as K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> in most countries and KMnO4 in the case of Japan).
- TOC measures carbon content.



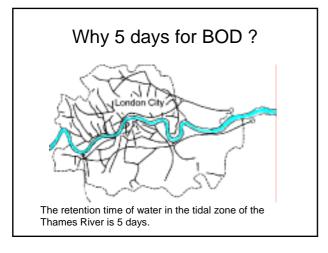














### BOD<sub>5</sub>

- BOD5=DO0-DO5, if dilution is not necessary.
- BOD measures oxygen demand in the decomposition of biodegradable organic matter.
- If the water contains NH<sub>3</sub>-N and seed microorganisms include nitrifying bacteria, BOD = Carbonaceous BOD + Nitrogenous BOD
- BOD has limitations when we want to measure BOD for toxic wastewater or seawater.
- BOD is useful to evaluate river water quality and biodegradable wastewater



# Measurement of BOD5

- BOD<sub>5</sub>=(DO<sub>0</sub>-DO<sub>5</sub>), if dilution is not necessary .
- DO can be measured by the azide modification of the iodometric method or by membrane electrode method.
- DO<sub>5</sub> can be measured by using a glassware like the right figure.



## Other BODs

- <u>U-BOD.</u> U-BOD measures the ultimate biodegradability for 30 days or longer, while BOD<sub>5</sub> measures readily biodegradable organic matter.
- <u>D-BOD (Dissolved BOD).</u> When we analyze water samples, we sometimes need the distinction of dissolved BOD and Particulate BOD. P-BOD can be measured by total BOD subtracted by D-BOD.

## COD

- COD measures the content of organic matter which can be oxidized by a specific chemical reagent (such as K2Cr2O7 in most countries and KMnO4 in the case of Japan).
- COD is useful when we want to measure organic content of water which contains slowly or non biodegradable matters.
- COD is useful when we want to discuss lake water quality, because water retention time is longer than 5 days.
- Salt content may interfere the measurement of COD.

### Measurement of COD

- Digest sample for a certain time (Typically two hours) by using the glassware like ....
- Titration method is used.
- There are many CODs like CODcr and CODmn with various heating condition and heating time, and digestion pH.



## Various CODs

COD(Cr): K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, 2 Hours heating by direct gas burner with open reflax or with closed reflux.

COD(Mn): KMnO4, 30 minites in 100 Ceisius degree hot bath.

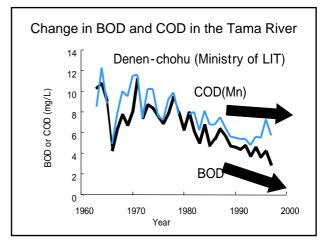
COD(OH): KMnO4, 20 minites in 100 Ceisius degree hot bath. This method is used for sea water in Japan. (However, I do not recommend)

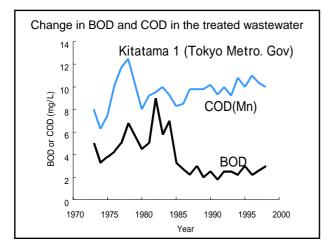
Comparison of COD(Cr) and COD(Mn) of standard solutions which theoretically give oxygen consumption of 100 mg/L.

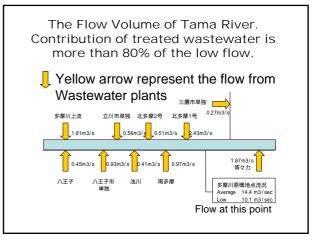
| Solution      | COD(Cr) | COD(Mn) |
|---------------|---------|---------|
| Formic acid   | 99.4    | 14      |
| Stearic acid  | 92.5    | 0       |
| Methanol      | 95.3    | 27      |
| Glucose       | 97.6    | 59      |
| Starch        | 86.5    | 61      |
| Glutamic acid | 102     | 6       |

## тос

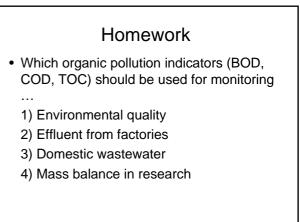
- TOC measures carbon content. TOC is expressed as mgC/L, while BOD and COD are expressed as mgO/L.
- TOC measures CO<sub>2</sub> gas when sample is broken down completely.
- Instrumental analysis with high temperature combustion method is often used.
- It is difficult to measure accurately the samples containing high SS by the high temperature combustion method using instruments.


# **TOC** Instrumental Analysis


- The instrument measures CO2 concentration when sample is burned at 600 Celsius degree to 950 Celsius degree. Higher temperature is preferable for complete decomposition, while lower temperature reduces interference caused by salts.
- TOC = TC-IC. If IC is high, acid pretreatment of sample is required to release IC.


#### DOC

- DOC (Dissolved Organic Carbon) is often measured.
- The ratio of DOC to E<sub>260</sub> is often used to evaluate biodegradability of the samples.


| Typical values            |                        |                       |                     |  |  |
|---------------------------|------------------------|-----------------------|---------------------|--|--|
|                           | Domestic<br>wastewater | Treated<br>wastewater | Tama River<br>Tokyo |  |  |
| BOD5<br>(mgO/L)           | 200                    | 5                     | 3                   |  |  |
| CODcr<br>(mgO/ <i>L</i> ) | 300                    | 30                    | 10                  |  |  |
| TOC<br>(mgC/ <i>L</i> )   | 80                     | 7                     | 3                   |  |  |







| The ratio of pollution loading originating from<br>treated wastewater (%) 東京都環境科学研究所, 1996 |                    |      |         |         |  |  |  |  |
|--------------------------------------------------------------------------------------------|--------------------|------|---------|---------|--|--|--|--|
|                                                                                            | 項目                 | July | October | January |  |  |  |  |
|                                                                                            | T-N                | 59   | 51      | 64      |  |  |  |  |
|                                                                                            | NH <sub>4</sub> -N | 83   | 49      | 77      |  |  |  |  |
|                                                                                            | NO <sub>X</sub> -N | 48   | 53      | 50      |  |  |  |  |
|                                                                                            | T-P                | 63   | 62      | 73      |  |  |  |  |
|                                                                                            | C-BOD              | 49   | 26      | 48      |  |  |  |  |
|                                                                                            | COD                | 54   | 45      | 58      |  |  |  |  |
|                                                                                            | TOC                | 53   | 42      | 59      |  |  |  |  |
|                                                                                            | SS                 | 16   | 9       | 25      |  |  |  |  |
|                                                                                            | Cl-                | 62   | 53      | 57      |  |  |  |  |
|                                                                                            | SO42-              | 45   | 32      | 45      |  |  |  |  |



