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In Table 3.2, "C" is concrete cover (mm).  For the case of C > 100 mm, C = 100 mm.  
In Table 3.2, the permissible crack widths for prestressing steel in corrosive 
environment and severely corrosive environment are not determined.  It is considered 
that prestressed concrete can be designed prohibiting the formation of flexural cracks 
by using prestressing, and that it is necessary to examine the corrosion of prestressing 
steel much more carefully.  It is advisable to design the prestressed concrete member 
prohibiting the formation of cracks in such environmental conditions.

3.1.3  Prediction of Flexural Crack Width
(1)  Derivation of equation for predicting flexural crack width

When the flexural moment is applied to RC beams, a flexural crack due to flexural 
tensile stress occurs at the extreme tension fiber.  Then, as the moment is increased, the 
number of cracks increases and the crack spacing gets smaller.  This will cause the 
tensile stress in concrete between the adjacent cracks.  After the initiation of number of 
flexural cracks, new cracks are hardly formed because of a relatively short 
development length for bond stress.  Hence, the stable state of cracking is obtained.  At 
this stage, cracked portion around the tensile reinforcement in a flexural member can 
be considered to be equivalent to a concrete member having a single reinforcement 
subjected to pull-out force at both ends (Fig. 3.1).

Denote l as the crack spacing.  From the equilibrium of forces at the mid section 
between cracks, the following relationship can be derived:
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Fig. 3.1  Idealized conditions of bond between steel and concrete

where, is the average bond stress between the two adjacent cracks
l is a spacing of cracks.
U is a perimeter length of reinforcement.
Ae is effective area of cover concrete.

is the average tensile stress of concrete at the mid section.
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The relation between  and the tensile 
force P of steel shows that the maximum
value of  exists.  At this point          ,   
the crack spacing l becomes stable (Fig. 3.2).  
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When       reaches a certain limit value, i.e., 
k ft (where, k : coefficient representing the 
stress distribution over the mid-section and 
ft : tensile strength of concrete), the new 
crack between adjacent two cracks occurs. 
Hence, the maximum crack spacing is 
defined as follows:
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Fig. 3.2  Relationship between pull-
out force and average bond stress

It is noted that in the case of more than two reinforcing bars, Ae is defined by the 
centroid of total reinforcing bars (Fig. 3.3).  For simplicity, if the maximum average 
bond stress is assumed to be proportional to the tensile strength of concrete, ft, the 
following relationship can be obtained.

(3.3)t1max.b fk=τ
where, k1 : coefficient representing bond characteristics
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Fig. 3.3  Definition of effective concrete
area Ae

Substituting Eq. (3.3) into Eq. (3.2) and 
defining the ratio of reinforcement area to 
the effective area of cover concrete Ae as an 
effective reinforcement ratio pe will lead to 
the following equation.

(3.4)

where, k2 : coefficient representing bond 
characteristics, φ: diameter of reinforcement

This equation proposed by Saliger in 
1938.  However, it was found later that this 
equation cannot be applied for RC members 
in flexure. Kakuta in Hokkaido University 
proposed that the maximum average bond 
stress is affected by not only the
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tensile strength of concrete ft but also the diameter of reinforcement φ, the effective 
area of concrete Ae, and concrete cover c.  The empirical formula to obtain
is expressed as follows:

(3.5)

Substituting Eq. (3.5) into Eq. (3.2) yields,

(3.6)
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where, k4 : coefficient representing bond characteristics.  k4 approximates as 5.4 for 
D16~32 (f = 16~ 32 mm) deformed bars.  

In the case of more than two reinforcing bars, a clear spacing between reinforcing 
bars es has to be considered, and Eq. (3.6) is modified as follows:

(3.7)

To determine the crack width w, the following relationship is adopted (Fig. 3.4).

(3.8)
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Fig. 3.4  Crack width
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where, : average tensile strain of reinforcement between cracks
: average tensile strain in concrete between cracks

l    : crack spacing (crack interval)

The average tensile strain of concrete is divided into two components as:

(3.9)

where, : average tensile strain due to external tensile force
ε 'cs : compressive strain due to drying shrinkage and creep in concrete

On the other hand, the average tensile strain of reinforcement      is expressed as 
follows:

(3.10)

where, σs : tensile stress of reinforcement at the crack position
Es : Young's modulus of steel

: average tensile stress of concrete between cracks 

This      can be considered as the effect of tension stiffening due to bond.  In general,
in Eq. (3.9) is negligibly small as compared with other components.  Thus, by using

Eqs. (3.7) to (3.10), the following equation to predict the maximum crack width wmax
was proposed by Kakuta.

(3.11)
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(2)Design equation for prediction of flexural crack width

Based on Eq. (3.11), the design equation for prediction of flexural crack width is 
stipulated in the JSCE Specification.

(3.12)

where, k : constant to take into account the influence of bond characteristics of 
reinforcing bar, 1.0 for deformed bars, 1.3 for round bars.

c : concrete cover
cs : center-to-center distance of reinforcement
φ : diameter of reinforcement
ε 'cs : compressive strain due to drying shrinkage and creep in concrete

= in general
σse : tensile stress in reinforcement due to external loads (the external loads

to be considered are the combination of permanent and variable loads in
the service condition.)

Es : Young's modulus of reinforcement

(3)  Stress calculation under service loads
For the examination of serviceability limit states, stresses need to be computed, 

such as σse in Eq. (3.12).  Under service loads, the stresses in concrete and 
reinforcement are small, and hence concrete and reinforcement can be assumed to be 
elastic with the modulus of elasticity, Ec and Es, respectively.  As in the case of stress 
calculation for serviceability limit state, the following assumptions are used:
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(i) linear strain distribution along the cross section
(ii) perfect bond
(iii) neglecting tensile stress in concrete
(iv) concrete in compression and reinforcement are elastic

3.2  Deflection of RC Beam
3.2.1  Limit State on Deflection

In order to preserve the functions and serviceability of structures, the control of 
displacement and deformation of structures is also required.  For RC beams especially 
in bridge structures, the excess in deflection is highly related to the safety and comfort 
of vehicle traveling on the bridge.

There are two types of deformations.  One is short-term deformation that occurs 
immediately after the application of load.  The other is additional deformation caused 
by creep and drying shrinkage of concrete due to permanent load. The sum of these 
two deformations is called long-term deformation.
(long-term deformation = short-term deformation + creep & shrinkage deformation)

Similar to the limit state on crack width, the deflection of RC beams is examined to 
be less than or equal to the permissible value.  The permissible deflection is 
determined considering the type and purpose of structures and the type of loads.  For 
example, for the ordinary concrete bridge, the permissible deflection is set to be 
approximately 1/600 of the span length.

3.2.2  Prediction of Short-term Deflection
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There are many previous research works related to the prediction of short-term 
deflection of RC beams. However, in the JSCE Specification the method based on an 
effective moment of inertia empirically taking into account of flexural cracking is 
stipulated to determine the short-term deflection.  When the concrete does not have any 
flexural cracks, the gross moment of inertia, i.e., all concrete and steel, is effective in use.  
The following equation to determine an effective moment of inertia after flexural 
cracking which was originally proposed by Branson is adopted in the JSCE 
Specification.

(3.13)

where, Ie : effective moment of inertia considering flexural cracks
Mcr : cracking moment, which is equivalent to the moment of the cross section    
causing the tension fiber stress to be equal to the flexural strength of concrete.

(3.14)

where, yt : the distance from the neutral axis to the extreme tension fiber
fb : the flexural strength of concrete
Ig : the gross moment of inertia
Mmax : the maximum moment in a member concerned
Icr : moment of inertia for cracked cross section neglecting the concrete in 

tension
Eq. (3.13) is an approximated evaluation for a simply-supported beam subjected to 

uniformly distributed load.  However, even for RC beams with other loading and 
boundary conditions, this equation can be adopted to predict a deflection within an 
acceptable error.
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