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Eq. (2.61) is called as Bredt's formula.

2.4.3  Torsion Capacity of Reinforced Concrete Member Based on Space Truss 
Analogy

In the space truss analogy proposed by Raush, the original solid cross 
section is converted into an imaginary thin-walled tubular cross section.  
The following basic assumptions are made to calculate the ultimate torsion 
capacity.

(1)  After torsion cracks initiate and propagate, the core part of concrete in 
a solid cross section can be neglected and an original solid cross section can 
be assumed to be equivalent to the imaginary thin-walled tubular cross 
section.  The shear stress due to torsion becomes zero at the center of the 
cross section and the magnitude of the shear stress will increase when it 
approaches to the perimeter of a cross section.  Moreover, resisting torsion 
moment is proportionally increasing with the distance from the center of the 
cross section.  Thus, the assumption to neglect the effect of core part of 
concrete can be accepted.

(2)  From Bredt's theory, applied torsion can be converted into an uniform 
shear flow.  If the thickness of the imaginary thin-walled tubular cross 
section is assumed to be uniform, the shear stress also becomes uniform.
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(3) From Fig. 2.22, the shear stress is resisted by concrete and reinforcement.  
For simplicity, the contribution of concrete for tension after cracking is 
completely neglected (the tension stiffening including the tension softening is 
not taken into account).  According to this assumption, concrete can be 
assumed to be in uniaxial compressive stress state.  The direction of this 
compressive stress of concrete is parallel to the direction of torsion cracks.  
Reinforcing bars can resist only axial forces (the dowel action is neglected).

According to these assumptions, the following relationships can be 
obtained.  From the equilibrium condition in the horizontal and vertical 
surfaces, Eqs. (2.62) and (2.63) are derived.

where, Al, σl : area and stress of one longitudinal torsional reinforcing bar.  
At, σt : area and stress of one transverse torsional reinforcing bar. sl, st : the 
spacing of longitudinal and transverse reinforcing bars, respectively. σ’d, t : 
compressive stress of concrete and an imaginary wall thickness. α is an angle 
between the direction of diagonal compressive stress of concrete and the 
longitudinal direction of a member.  α is assumed to be uniform throughout 
the wall surface.
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If we consider the extended element having the length 2 (xo+yo), Eq. (2.62) 
can be rewritten as follows:

(2.64)

Al 2(xo+yo)/sl means the total area of longitudinal reinforcement included in 
this cross section.  Thus, Eq.(2.64) can be written as follows:

(2.65)

If applied shear stress is designated as τ , the relationship between τ and σ'd
can be written as follows:

(2.66)

For applied torsion T  and shear stress τ , the following relationship can be 
obtained.

(2.67)

( ) ( ) 0cosyx2t's/yx2A 2
oodlooll =α+σ−+⋅σ

( ) 0cosyx2t'A 2
oodll =α+⋅σ−σ∑

αασ=τ cossin'd

( ) tyx22y2/x2x2/ytT oooooo τ=××+××⋅⋅τ=
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From the relationships, xo yo=Ao and 2(xo+yo) = po, and Eqs. (2.62) to (2.67), 
the stress of reinforcement in both directions can be determined as follows:

(2.68)

(2.69)

At the ultimate stage, we can assume torsional reinforcement in both 
directions has already yielded.  From Eqs. (2.68) and (2.69), we can delete α
and we can use fly and fty instead of steel stresses.  Finally, we can get the 
torsional capacity based on the yielding of both torsional reinforcements as 
follows:

(2.70)

To calculate Tmax, we need to determine xo and yo in advance.  Two ideas are 
proposed to determine xo and yo (Fig. 2.23).  One is the idea to determine xo
and yo according to the center line connecting longitudinal reinforcement.  
Another idea is to trace the location of the transverse reinforcement.  The 
former will give an conservative estimation.

( )∑ α=σ ooll A2/cotpTA
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Fig. 2.23
xo and yo (Effective area for torsion)

Equation (2.70) can be applied when both torsional reinforcements have 
already yielded.  In an actual reinforced concrete member, once the 
reinforcement in one direction yields, the torsional resisting mechanism will 
be changed and it will cause the change in the angle α.  For example, when 
the transverse torsional reinforcement has yielded due to applied torsion, the 
angle α will be decreased and the resisting force in longitudinal 
reinforcement will be increased.  Finally, both reinforcements will yield.  
However, if the reinforcement ratio is too unbalanced, Eq. (2.70) will 
overestimate the ultimate torsional capacity.


