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2.4  Torsion Capacity of RC Linear Members
2.4.1  Mechanical Behavior of RC Linear Members Subjected to Torsion

According to torsion, shear stresses are caused in reinforced concrete 
linear members as shown in Fig. 2.18.  
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Fig. 2.18  Applied torsion and shear stresses due to torsion
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When the magnitude of applied torsion is small, these shear stresses are 
small and the principal tensile stress converted from these shear stresses is 
also small.  Therefore, concrete does not have cracks and behaves as an elastic 
body.  However, with the increase in applied torsion, shear stresses are 
increased and cracks initiate.  Torsion cracks generally propagate in a 
member making 45 degrees with a member's longitudinal axis.  If torsional 
reinforcement is not provided, the initiation of torsion cracks means the 
failure of a reinforced concrete member.

Torsional reinforcement consists of longitudinal reinforcement and 
transverse (or lateral) reinforcement.  Transverse reinforcement should be a 
closed form and enclose longitudinal reinforcement.  When torsional 
reinforcement is provided in a member, the increase in applied torsion after 
the torsion cracking can be resisted depending on the amount of 
reinforcement.  A number of torsional cracks can be observed.  However, the 
tangential stiffness is gradually decreasing with the increase in the torsion 
angle.  Finally, due to the crushing of concrete, a member will lose its strength.  
This behavior is shown in Fig. 2.19.
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2.4.2  Shear Flow due to Torsion
According to the elastic theory, the shear stress for a solid cross section 

can be obtained.  However, for a thin-walled tubular cross section, another 
derivation is available.

Consider a thin-walled tubular cross section subjected to torsion (Fig. 
2.20).  A small element is taken from this section.  From the equilibrium 
condition in an axial direction, the following relationship can be obtained:
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Fig. 2.20  Shear stress of thin-walled tubular cross section subjected to torsion

2211 tt τ=τ (2.59)

The product of a shear stress and a thickness of wall is defined as "shear flow 
(shear force per unit length)".  Equation (2.59) means the shear flow must be 
constant throughout a tubular cross section.  When the thickness of wall is 
uniform, the shear stress due to torsion must be constant throughout a 
tubular cross section.

Consider the small length (ds) on the center line of wall thickness (Fig. 
2.21).  From the equilibrium condition for torsion, the following relationship 
can be derived between the torsion and the shear flow:
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Fig. 2.21  Relationship between shear flow q and applied torsion T 

∫ ∫== dsrqdsrqT (2.60)

where, r : the distance between the center of a cross section and the shear 
force (q ds).  The quantity of (r ds) is twice the area of a shadowed triangle.  
Thus, the integral of (r ds) of Eq. (2.60) becomes twice the area enclosed by 
the center line of wall thickness.

The area enclosed by the center line of wall thickness is defined as the 
torsional effective area Ao.  The shear flow can be expressed as follows:
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Eq. (2.61) is called as Bredt's formula.

2.4.3  Torsion Capacity of Reinforced Concrete Member Based on Space Truss 
Analogy

In the space truss analogy proposed by Raush, the original solid cross 
section is converted into an imaginary thin-walled tubular cross section.  
The following basic assumptions are made to calculate the ultimate torsion 
capacity.

(1)  After torsion cracks initiate and propagate, the core part of concrete in 
a solid cross section can be neglected and an original solid cross section can 
be assumed to be equivalent to the imaginary thin-walled tubular cross 
section.  The shear stress due to torsion becomes zero at the center of the 
cross section and the magnitude of the shear stress will increase when it 
approaches to the perimeter of a cross section.  Moreover, resisting torsion 
moment is proportionally increasing with the distance from the center of the 
cross section.  Thus, the assumption to neglect the effect of core part of 
concrete can be accepted.

(2)  From Bredt's theory, applied torsion can be converted into an uniform 
shear flow.  If the thickness of the imaginary thin-walled tubular cross 
section is assumed to be uniform, the shear stress also becomes uniform.


