
Mechanics of Structural Concrete

Assignment No.2

The RC cross-section as the same as that of **Assignment No.1** is given. The dimensions and material properties are also same. When this RC cross section is subjected to the combination of flexural moment and axial force, calculate the ultimate capacity, M_u (kN-m) and N'_u (kN) according to the condition shown in the following interaction curve. Then, draw the interaction curve accurately.

Comments

For the calculation of the resultant of compressive stresses in concrete, the equivalent stress block ($0.85 f_c' \times 0.8x$) can be used.

- (1) M=0. $x \rightarrow \infty$. N'c=0.85f'c×0.8x×b=0.85f'c b h
- (2) $\epsilon_s = 0.$
- (3) $\varepsilon_s = \varepsilon_y$. Balanced failure.
- (4) $\varepsilon_s = \varepsilon'_{sc}$.
- (5) $\varepsilon'_{sc} = \varepsilon'_{y}$.
- (6) N'=0.