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2.2  Capacity of RC Section Subjected to Combined Flexural Moment
　　　and Axial Force
2.2.1  General Method to Calculate Stresses in RC Section with Axial　Force

In principle, the behavior of RC sections in the case of pure flexure, and combined 
flexure and axial force are almost the same.  Hence, the similar assumptions are also 
applied to calculate the stresses in RC section subjected to combined flexural moment 
and axial force.

In the case of tensile stresses arising inside the section, the same equations Eqs.(2.3)-
(2.13) can be used with a modification of Eqs.(2.12) and (2.13) which include the 
external axial force N into the equilibrium of force and moment.

In the case of no tensile stresses inside the section, the compressive strain of 
concrete and steel at arbitrary points are expressed by the extreme compressive fiber 
strains at the top and the bottom ε'cc and ε'ct as follows (Fig. 2.6):
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Fig. 2.6  Stress and strain distribution when RC section is subjected to
combined moment M and axial force N'
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The relations between resultant forces and stresses are expressed as 
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From the equilibrium condition for force and flexural moment,
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There are two equations, i.e., Eqs.(2.47) and (2.48) to solve for four unknowns: M, 
N', ε'cc, and ε'ct. By giving two of them, other two can be calculated.

2.2.2  Case of concentric axial compressive force
For the section subjected to only axial compressive force at the centroid of section, 

the compressive stress distribution of which is uniform across the section.

The relationship of the axial compressive force N' and compressive strain is shown 
in Fig. 2.7.  
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N' is equal to the sum of compressive force carried by concrete N'c and that 
carried by steel N's.  The relations of these forces and compressive strain are 
equivalent to the stress-strain relations.  When the yield strain of steel ε'y is less than 
the strain of concrete at the peak, ε'o, the axial compressive capacity of RC section
N'u is the sum of axial compressive capacity of concrete N'co and the yield force of 
steel N'y .

(2.49)

where, Ac : the area of concrete
As : the area of steel

ysccu fA'fA85.0'N +=

However, when ε'y is greater than ε'o, N'u is less than the sum of the capacity of 
both materials.  Except for the case of high strength steel, Eq.(2.49) is applicable for 
most of the cases.

It is noted that the above discussion is for the case of no buckling of steel.  To 
prevent the buckling, either increasing concrete cover or using tie or spiral 
reinforcement must be inevitable.  The use of tie or spiral reinforcement is required 
in RC columns due to another reason.  At the ultimate state of RC columns, the 
concrete covering axial reinforcement is suddenly crushed and beyond the peak 
resistance the load decreases very rapidly.  This type of failure is very brittle and is 
not preferable in the design.  The spiral reinforcement confines the lateral strain of 
concrete due to axial compression, which helps to increase both ductility and 
capacity of RC columns.
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2.2.3  Case of eccentric axial compressive force
In the case that axial compressive force is not applied at the centroid of the 

section, the stress distribution is non-uniform.  Capacity of the section decreases, 
when the distance between the applying point of force and the centroid which is 
called "eccentricity, e" becomes larger.

When e is small, the steel strain in the flexural tension zone εs is always in 
compression.  As e becomes larger, even when εs is compression in the beginning, it 
becomes tension at the ultimate state.  For the larger value of e, the steel strain εs
reaches the yield point at the ultimate state.

In the case of yielding of steel, the deformation of RC section, i.e., the rotation of 
section, becomes large as the eccentricity increases.  The behaviors of a RC section 
with large eccentricity are similar to those of RC members under pure flexure, i.e., 
e/h=∞.

2.2.4  Interaction Curve
The capacity of RC section subjected to combined flexure and axial force depends 

on the ratio of applied moment and axial force.  At the ultimate state, the relation 
between the flexural capacity Mu and the axial compressive capacity N'u is called as 
"interaction curve".  When a point of combination of flexural moment and axial 
force is on or outside of this interaction curve, the RC section fails.

For the constant eccentricity, the straight line drawn from the origin expresses 
the proportional increase of flexural moment and axial force, and the intersection 
point between this straight line and the interaction curve indicates the capacity of 
the section (Fig. 2.8).
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Fig. 2.8  Interaction curve for flexural moment and axial compressive force

At point B in Fig. 2.8, the yield strain of steel and the ultimate compressive strain 
of concrete occur simultaneously at the ultimate state, which corresponds to the 
balanced failure. The axial force, the flexural moment, and the eccentricity at the 
point B are called as "balanced axial force N'b", "balanced moment Mb", and 
"balanced eccentricity eb", respectively.  When the ratio of applied flexural moment 
and axial force (M/N') is less than eb, the failure becomes flexural compression 
failure mode and when M/N' > eb, the failure becomes flexural tension failure mode.
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In the case of rectangular section with height h, width b, effective depth d, and 
symmetric reinforcement (As = A's, h - d = d'), the interaction curve between non-
dimensional flexural moment (Mu/bh2f'c) and non-dimensional axial force (N'u/bhf'c) 
depends on the values of d/h and p fy/f'c, where p : reinforcement ratio (=As/bd), fy: 
yield strength of steel, f'c: compressive strength of concrete.

2.2.5  Balanced Failure in Case of Combined Flexure and Axial Force
In the case of pure flexure, the balanced failure occurs when the reinforcement 

ratio is equal to the balanced reinforcement ratio.  However, in the case of 
combined flexure and axial force, depending on the ratio of the combination of 
flexural moment and axial force, the balanced failure can occur regardless of 
reinforcement ratio.

For rectangular cross section with symmetric reinforcement, the location of the 
neutral axis from the compression fiber at the balanced failure can be expressed as 
follows:

(2.50)d
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Normally it can be assumed that the compression steel has already yielded at the 
balanced failure.  Moreover, if the reinforcement is symmetric, the compressive 
and tensile forces of reinforcing steel are the same.  Therefore, the external 
compressive force (balanced force) N'b becomes equal to the resultant compressive 
force of concrete N'c.
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By using Whitney's equivalent stress block (Fig. 2.9), 

(2.51)

By substituting Eq.(2.51) into Eq.(2.50), the following relationship can be 
obtained;

(2.52)

From the equilibrium of moment around the centroid axis, 
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(2.53)

where,

fy : the yield strength of reinforcing steel

In the case of εs=0 and ε 'sc=ε 'y, x can be obtained in the same way as Eq.(2.50) 
and the same procedures can be applied to obtain N'u and Mu (Fig. 2.10).
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2.2.6  Examination for limit states in the case of combined flexure and
axial force

Similar to the case of flexure, the design capacity of the section is calculated by 
using the design stress-strain relationship.  The design capacity can be obtained 
from the design interaction curve by using pfyd/f'cd instead of pfy/f'c.
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Alternative method is to calculate the design flexural capacity Mud based on the 
constant eccentricity e = Md/N'd where Md : design externally applied flexural 
moment and N'd : design externally applied axial force.  This will not involve the 
whole interaction curve but only the related point on the interaction curve.

Fig. 2.10  Simple method for drawing interaction curve


