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2  ULTIMATE LIMIT STATE
2.1  Flexural Capacity of RC Beam
2.1.1  Behavior of RC Beam under Flexure

For a RC beam subjected to flexural moment, its behavior can be classified into 
three stages.

Stage I (before flexural cracking of concrete)
- The distribution of stress and that of strain are linear and the strains of concrete

and steel at the same position are the same.
- The relation of moment and deformation (deflection, rotation or strain of steel)

is linear.
- The stress in steel is extremely small and hence, its effect can be neglected.

Stage II (after flexural cracking of concrete and before yielding of steel)
- When the tensile stress of concrete becomes larger than the tensile strength,

flexure crack starts at the extreme tension fiber and propagates to the
compression side.  Flexural cracks in other section than that of the maximum
moment also occur with the increase in load, and the crack width is increasing.

- The resistance in tensile part of the section is mostly carried by reinforcing steel
and hence the strain in steel increases rapidly.

- The strain distribution along the height of the cross section is almost linear.
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Stage III (after yielding of steel)
- After yielding of steel, the strain in steel increases very rapidly and the stress
in steel keeps a constant value equal to the yield stress.  The moment at the 
point of yielding of steel is called as the yield moment, My.

- Due to the balance of forces, the increase in resisting load is very small and
only influenced by the arm length between the total compressive and tensile
forces.

- The cross section fails when the strain in concrete reaches the ultimate
compressive strain.  This state is called the ultimate state and the moment at
this stage is called the flexural ultimate moment, Mu (Fig. 2.1).
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Fig. 2.1  Stress and strain behaviors of RC beams in various stages
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The rough estimate for the strain in steel is as follows:
strain at stage III = 10 × (strain at stage II)
strain at stage II = 10 × (strain at stage I)

In the case of large amount of tensile reinforcing steel, before reaching the stage 
III, the strain in concrete might reach the ultimate strain, i.e., the steel does not 
yield even at the ultimate state.  This type of failure is not preferable in the design 
of reinforced concrete due to two reasons: (1) The steel is not effectively used and 
only slight deformation is expected up to failure.  (2) The ductility of the cross 
section defined by the area under the load-deformation curve is small, and 
therefore a brittle failure occurs.

Types of both failures are called: "flexural tension failure" for the case of 
yielding and "flexural compression failure" for the case of no yielding, 
respectively.  The parameter controlling the failure mode is reinforcement ratio 
"p" defined as p = As /(b d), where As : the area of tensile steel, b : the width of cross 
section, and d : the effective depth measured from the extreme compression fiber to 
the centroid of the tension steel (Fig. 2.2).
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Fig. 2.2  Definitions of failure modes for RC beams in terms of strain
in tensile reinforcement

The reinforcement ratio at the border of both flexural tension and compression 
failures is called as the balanced reinforcement ratio pb.

For flexural tension failure, flexural capacity Mu is strongly influenced by the 
reinforcement ratio (p) and yield strength (fy) of tension steel, rather than those of 
compression steel (p', fy') and concrete strength (f'c).
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In flexural compression failure, on the contrary Mu is affected by p', fy', f'c rather 
than p, fy.

In the design of reinforced concrete beams subjected to flexural moment, the 
reinforcement ratio of tension steel p should not be too large to prevent flexural 
compression failure as previously mentioned.  Also, p should not be too small 
because reinforced concrete beams might fail after the first flexural crack occurs.

2.1.2  General Method to Calculate Stresses in RC Beams
For ordinary reinforced concrete beams, the flexural tension failure occurs, and 

the relation among Mcr, My, and Mu are as follows:

(2.1)

where, Mcr : the flexural cracking moment,  My : the yielding moment,
Mu : the ultimate moment (= the flexural capacity).

In the stage I, concrete can be assumed to be elastic and the effect of reinforcing 
steel can be neglected.  Therefore,

(2.2)

where, Ig : moment of inertia of gross cross section of concrete about centroid axis
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fb : flexural strength of concrete
yt : distance from the neutral axis to the extreme tension fiber

After concrete cracks (stage II), the stresses in concrete subjected to compression 
can be calculated by assuming the function of strain according to uniaxial stress-
strain relation as follows:

(2.3)

(2.4)

(2.5)

where, σ’c, ε’ c : compressive stress and strain of concrete
σs, εs     : tensile stress and strain of tensile steel
σ’sc, ε’ sc : compressive stress and strain of compression steel
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The strain distribution is assumed to be linear as follows:
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where, ε’cc : the value of compressive strain of concrete at the extreme compression
fiber (positive)

ε’sc : the strain in compression steel (positive in compression)
ε’cy : the value of compressive strain of concrete at the distance y from the

neutral axis  (positive in compression)
d : the effective depth
x : distance from the extreme compression fiber to the neutral axis (Fig. 2.3).
d’ : distance from the extreme compression fiber to the centroid 

of compression steel
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Fig. 2.3  Definitions of notations
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The relations between internal forces and stresses are as follows:

(2.9)

(2.10)

(2.11)

f4 and f5 are the functions obtained from Eqs.(2.4), (2.7) and (2.5), (2.8), 
respectively.  In these relationships,

N'c : resultant internal compressive force of concrete
Ns : resultant internal tensile force of tension steel
N'sc : resultant internal compressive force of compression steel
by : width of section at distance "y" from the neutral axis
As : area of tension steel
A’s : area of compression steel
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where,       : the distance from the extreme compression fiber to N'c

(2.14)
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By substituting Eqs.(2.9)-(2.11) into Eqs.(2.12) and (2.13), the unknown values of 
ε 'cc, x, M are determined from two equations with one given value for either of them.

2.1.3  Calculation of Flexural Capacity
(1)  Assumption for uniaxial stress - strain relationship

The following relationships are stipulated in JSCE's specification.
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(2.17)

where, ε'y = f'y/Es
Where, f'c : compressive strength of concrete

k3 = 0.85,  ε’o = 0.002, ε’u = 0.0035
fy, f’y : yield strength of tension and compression steel
Es = 2.0×105 N/mm2 (Fig. 2.4)
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Fig. 2.4  Stress-strain relationships for concrete and steel to be applied to 
the design
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(2)  Ultimate moment for flexural tension failure
In the case of no compression steel, i.e., A's = 0, for the flexural tension failure, the 

state of strains can be expressed as follows:

(2.18)

Also, when the rectangular cross section is considered, by becomes constant and by = 
b.   Substituting Eqs.(2.15) - (2.18) into Eqs.(2.9) - (2.11), the following results can be 
obtained.

(2.19)
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Substituting Eqs.(2.19) - (2.21) into Eq.(2.12) (the equilibrium condition), x can be 
calculated.

(2.22)

where,  p : reinforcement ratio of tension steel ( = As /(b d))
Then, from Eqs. (2.14) and (2.19), 

(2.23)

where, 

From Eq. (2.13),
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After substituting values of ε'o = 0.002, ε’u = 0.0035, k1 and k2 can be calculated 
as follows:

Substituting k3 = 0.85 and k1, k2 into Eq. (2.24) leads to,

(2.25)

Eq.(2.25) shows the nondimensional relationship between Mu/bd2f'c and pfy/f'c.

Flexural compression failure moment can be obtained as follows:
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Relating to the shape of stress distribution of concrete, instead of using the 
parabolic curve as mentioned in the code, the equivalent stress block, with the same 
resultant compressive force and its location can be used because it can produce 
almost same ultimate moment.  The simplest shape for the equivalent stress block is a 
rectangular one (Fig. 2.5).
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Fig. 2.5  Equivalent stress blocks for flexural compression zone

As shown in Fig. 2.5, the stress block (b) is equivalent to the shape (a), and the 
stress block (c) proposed by Whitney is an approximated one.  This Whitney's stress 
block is commonly used in various codes as the equivalent stress block.  It is noted 
that this equivalent stress block concept is theoretically applicable only to a cross-
section with a constant width in compressive side, but it is also used to such cross-
section shapes as T-section, I-section, and circular section because it can be proved 
that the difference between the results of actual stress-strain curve and equivalent 
stress block is very small.
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In the case of double reinforcement, the above method has to be modified to 
include the effect of compression steel.  However, for ordinary RC beams which are 
designed to exhibit flexural tension failure, the effect of compression steel is less 
influential in the calculation of the ultimate moment.

(3)  Balanced reinforcement ratio
The balanced reinforcement ratio is used to judge whether flexural tension or 

compression failure occurs.  A RC beam with the balanced reinforcement ratio will 
fail when the ultimate compression strain of concrete and the yield tensile strain of 
steel occur simultaneously.

(2.26)

(2.27)

Therefore, if the reinforcement ratio is less than 0.40f'c/fy, the flexural tension 
failure will occur.
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(4)  Design ultimate flexural capacity (ultimate moment)
In checking the ultimate limit state, partial safety factors are used to determine 

the design ultimate flexural capacity, Mud.
The design material strength f'cd, fyd and εyd are obtained from characteristic 

values and material factors.  The member factor γb (= 1.15) is used to obtain Mud in
Eq. (2.24) as follows:

(2.28)

and from Eq.(2.27),
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2.1.4  Stresses in RC Beams in Serviceability Limit State
(1)  Doubly reinforced rectangular cross-section

Within the serviceability limit state, since stresses in concrete and steel are small, 
they are considered to be elastic. Eqs. (2.9)-(2.11) can be simplified as follows:
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(2)  Singly reinforced rectangular cross-section
Putting A's =0, then the following equations are obtained.
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