2 ULTIMATE LIMIT STATE

2.1 Flexural Capacity of RC Beam

2.1.1 Behavior of RC Beam under Flexure
For a RC beam subjected to flexural moment, its behavior can be classified into

three stages.

Stage | (before flexural cracking of concrete)
- The distribution of stress and that of strain are linear and the strains of concrete
and steel at the same position are the same.
- The relation of moment and deformation (deflection, rotation or strain of steel)

iIs linear.
- The stress in steel is extremely small and hence, its effect can be neglected.

Stage Il (after flexural cracking of concrete and before yielding of steel)

- When the tensile stress of concrete becomes larger than the tensile strength,
flexure crack starts at the extreme tension fiber and propagates to the
compression side. Flexural cracks in other section than that of the maximum
moment also occur with the increase in load, and the crack width is increasing.

- The resistance in tensile part of the section is mostly carried by reinforcing steel
and hence the strain in steel increases rapidly.

- The strain distribution along the height of the cross section is almost linear.



Stage 111 (after yielding of steel)

- After yielding of steel, the strain in steel increases very rapidly and the stress
in steel keeps a constant value equal to the yield stress. The moment at the
point of yielding of steel is called as the yield moment, M,,.

- Due to the balance of forces, the increase in resisting load is very small and
only influenced by the arm length between the total compressive and tensile
forces.

- The cross section fails when the strain in concrete reaches the ultimate
compressive strain. This state is called the ultimate state and the moment at
this stage is called the flexural ultimate moment, M, (Fig. 2.1).
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Fig. 2.1 Stress and strain behaviors of RC beams in various stages 2



The rough estimate for the strain in steel is as follows:
strain at stage 111 = 10 > (strain at stage I1)
strain at stage Il =10 >< (strain at stage I)

In the case of large amount of tensile reinforcing steel, before reaching the stage
I11, the strain in concrete might reach the ultimate strain, i.e., the steel does not
yield even at the ultimate state. This type of failure is not preferable in the design
of reinforced concrete due to two reasons: (1) The steel is not effectively used and
only slight deformation is expected up to failure. (2) The ductility of the cross
section defined by the area under the load-deformation curve is small, and
therefore a brittle failure occurs.

Types of both failures are called: "flexural tension failure™ for the case of
yielding and "‘flexural compression failure' for the case of no yielding,
respectively. The parameter controlling the failure mode is reinforcement ratio
"p" defined as p = A, /(b d), where A, : the area of tensile steel, b : the width of cross
section, and d : the effective depth measured from the extreme compression fiber to
the centroid of the tension steel (Fig. 2.2).
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Fig. 2.2 Definitions of failure modes for RC beams in terms of strain
in tensile reinforcement

The reinforcement ratio at the border of both flexural tension and compression
failures is called as the balanced reinforcement ratio p,.

For flexural tension failure, flexural capacity M, is strongly influenced by the
reinforcement ratio (p) and yield strength (f,) of tension steel, rather than those of

compression steel (p, f,") and concrete strength (f*,).
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In flexural compression failure, on the contrary M, Is affected by p*, f,", ', rather
than p, f,.

In the design of reinforced concrete beams subjected to flexural moment, the
reinforcement ratio of tension steel p should not be too large to prevent flexural
compression failure as previously mentioned. Also, p should not be too small
because reinforced concrete beams might fail after the first flexural crack occurs.

2.1.2 General Method to Calculate Stresses in RC Beams
For ordinary reinforced concrete beams, the flexural tension failure occurs, and
the relation among M, M,, and M, are as follows:

<M, <M
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where, M, :the flexural cracking moment, M, : the yielding moment,

M, :the ultimate moment (= the flexural capacity).

(2.1)

In the stage |, concrete can be assumed to be elastic and the effect of reinforcing
steel can be neglected. Therefore,
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M, N
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where, I, : moment of inertia of gross cross section of concrete about centroid axis
(neutral axis) >



f, : flexural strength of concrete
y, : distance from the neutral axis to the extreme tension fiber
After concrete cracks (stage I1), the stresses in concrete subjected to compression

can be calculated by assuming the function of strain according to uniaxial stress-
strain relation as follows:

o.=1 (&) (2.3)
o, =1, (&) (2.4)
0y =T3 (€' ) (2.5)

where, o, & . :compressive stress and strain of concrete
g, tensile stress and strain of tensile steel

o,
o € o . compressive stress and strain of compression steel

sc?

The strain distribution is assumed to be linear as follows:

€ cy =& cc X (26)
., d-x |
g, =€, (2.7) d ywas wrong!
X
glsc = Slcc x—d (28)
X



where, &, : the value of compressive strain of concrete at the extreme compression

fiber (positive)
g . . the strain in compression steel (positive in compression)
&, : the value of compressive strain of concrete at the distance y from the
neutral axis (positive in compression)

d : the effective depth
. distance from the extreme compression fiber to the neutral axis (Fig. 2.3).
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The relations between internal forces and stresses are as follows:

jb chdy—gx jb f( )dg'cy (2.9)

CcC 0
(2.10)

Ny= Aoy =A fz(gs):As f (gICC’X d)
N'sc:Aslalsc:AslfB( ) A f ( cc 1 X dl) (2.11)

f, and f. are the functions obtained from Egs.(2.4), (2.7) and (2.5), (2.8),
respectlvely In these relationships,

N'. : resultant internal compressive force of concrete

N, : resultant internal tensile force of tension steel

N’ : resultant internal compressive force of compression steel
b, - width of section at distance "'y"* from the neutral axis

A, : area of tension steel

A’ : area of compression steel

From the equilibrium of forces in the case of pure bending (M : external moment

applied),
N’ +N';, =Ny =0 (212)

M=N'(d-y N, (d=d) (13



where, 7: the distance from the extreme compression fiber to N',

X
Iby o'cy ydy N 2 1 [

N 0 ' ' '

y =3 N'c :X_£8 c] N'c -“by f1(<9 cy)g oy 4y (214)

|C O

By substituting Eqgs.(2.9)-(2.11) into Eqgs.(2.12) and (2.13), the unknown values of
&' X, M are determined from two equations with one given value for either of them.

2.1.3 Calculation of Flexural Capacity
(1) Assumption for uniaxial stress - strain relationship
The following relationships are stipulated in JSCE's specification.

v | ' B £c |2 ' '
0C_k3f°{2(5'0j (8'0] } (0<eg's<é'y) (2.15)

=k3 ' (e'g<e'c<ey)
os = Eq &g (gsﬁgy) (2.16)

where, g, = f /E, 9



O'sc = Eg&'gc (glscggly)
= f'y (5'y<5'sc)

where, a'y = f'y/ES
Where, f'. : compressive strength of concrete
k;=0.85, &,=0.002, &,=0.0035
f, T, y|eld strength of tension and compression steel

y
E. =2.0><10°N/mm? (Fig. 2.4)
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Fig. 2.4 Stress-strain relationships for concrete and steel to be applied to
the design
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(2) Ultimate moment for flexural tension failure
In the case of no compression steel, i.e., A’ =0, for the flexural tension failure, the
state of strains can be expressed as follows:

Es > €y, E'cc =&\ (2.18)

Also, when the rectangular cross section is considered, b, becomes constant and b, =
b. Substituting Egs.(2.15) - (2.18) into Eqgs.(2.9) - (2.11), the following results can be
obtained.

&'y ' ' 2 gy
N'c =¥ ks 'c j {Z(Sﬂj_[gﬂj de'cy +j de'cy
u 0 €o €o &'

:bx(l— ‘9'? ) kg f'c =bxkiks f'c (2.19)
3¢,
where, Kk = (1— g? )
3¢,
Ng = Ag fy (2.20)
N ls(; = (2.21)
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Substituting Egs.(2.19) - (2.21) into Eq.(2.12) (
calculated.

A f pf
X = T . (2.22)
bk, k, ' k, k, f'
where, p: reinforcement ratio of tension steel ( = )

Then, from Eqs. (2.14) and (2.19),

' ' )\2
y:{l_l_(gozliw /6 ]X _ky x  (223)
1

where, 1-(g'9/6', )2 /6
k) = |1-
2 kg

From Eq. (2.13),

N'e (0 - y)

k f
My = A fyd|1-——2 Y
u As Ty ( k1k3pf'cj

My

(2.24)

), X can be
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After substituting values of &' = 0.002, &, = 0.0035, k; and k, can be calculated
as follows: k; = 0.810, ko =0.416
Substituting k,; = 0.85 and k,, k, into Eq. (2.24) leads to,
'\gu — = P ,fy [1— 0.60 F ,ny (2.25)
bdc f.  f' F'e
Eq.(2.25) shows the nondimensional relationship between M /bd*f* and pf /f'.

Flexural compression failure moment can be obtained as follows:
od-=x
Ng = As o5 = pbdEgél,

X
From Eq.(2.19),

w — pdEsg'u 14 1+4k1 k3 f'C
2k k3 T'c PEsey

My = N'c(d —7>
Mu =ka1 k3 flc(d —kzX)

2 £
bd? ',

:0.69% [1—0.416 %)bdz fro= (x/d~0.7)
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Relating to the shape of stress distribution of concrete, instead of using the
parabolic curve as mentioned in the code, the equivalent stress block, with the same
resultant compressive force and its location can be used because it can produce
almost same ultimate moment. The simplest shape for the equivalent stress block is a
rectangular one (Fig. 2.5).
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As shown in Fig. 2.5, the stress block (b) is equivalent to the shape (a), and the
stress block (c) proposed by IS an approximated one. This Whitney's stress
block is commonly used in various codes as the equivalent stress block. It is noted
that this equivalent stress block concept is theoretically applicable only to a cross-
section with a constant width in compressive side, but it is also used to such cross-
section shapes as T-section, I-section, and circular section because it can be proved
that the difference between the results of actual stress-strain curve and equivalent

stress block is very small. y



In the case of , the above method has to be modified to
Include the effect of compression steel. However, for ordinary RC beams which are
designed to exhibit flexural tension failure, the effect of compression steel is less
influential in the calculation of the ultimate moment.

(3) Balanced reinforcement ratio

The balanced reinforcement ratio is used to judge whether flexural tension or
compression failure occurs. A RC beam with the balanced reinforcement ratio will
fail when the ultimate compression strain of concrete and the yield tensile strain of
steel occur simultaneously.

e, =€, d —-x S ox=— gy q (226)
X eyt gy
Pp = —; Xl Ky K i
ey + &y f,
069 f
1+8y/8u fy (227)
fl
= 0.40~0.48 fc (f, =300~500N/mm?)

y

Therefore, if the reinforcement ratio is less than 0.40f" /f , the flexural tension

) ) cy?
failure will occur.
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(4) Design ultimate flexural capacity (ultimate moment)

In checking the ultimate limit state, partial safety factors are used to determine
the design ultimate flexural capacity, M.

The design material strength ', f ; and &, are obtained from characteristic
values and material factors. The member factor y (= 1.15) is used to obtain M Iin
Eq. (2.24) as follows:

f
Mug = As fyd d (1—0.60 p}ldj/yb (2.28)

Fed
and from EQ.(2.27),
069  f'sy

Ppd = (2.29)

2.1.4 Stresses in RC Beams in Serviceability Limit State
(1) Doubly reinforced rectangular cross-section

Within the serviceability limit state, since stresses in concrete and steel are small,
they are considered to be elastic. Egs. (2.9)-(2.11) can be simplified as follows:
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X

b n(As+As)

y=x/3
- M

¢ oxld-y) _ nA(x-d)d-d)

2 X
Og = d-x no'c

X

O'sc :X;dlnalc

J

(2.30)
(2.31)

(2.32)

(2.33)

(2.34)
(2.35)

(2.36)

(2.37)
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(2) Singly reinforced rectanqular cross-section

Putting A’, =0, then the following equations are obtained.

X = ”bAS(—H /1+stji] (2.38)

o = (2.39)

2M
bx(d—x/3)

oC=

(2.40)
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