
Mechanics of Structural Concrete

ASSIGNMENT No. 1

The following RC cross-section is given. The dimensions and material properties are also given. Referring the comments, calculate the following moments in **kN-m** unit.

- (1) Cracking moment, $M_{cr.}$
- (2)Yielding moment, M_y .
- (3)Ultimate moment, M_{u1} based on the equivalent stress block.
- (4) Ultimate moment, M_{u2} based on the stress-strain relationship.

Dimensions and material properties:

h = 1000 mm, b = 400 mm, d = 900 mm,

Es= 200 kN/mm², Ec= 25 kN/mm²

 $f'c = 30 \text{ N/mm}^2$, $fb = 4.5 \text{ N/mm}^2$

 $\epsilon'_{cu} = 0.0035$, $\epsilon'_{o} = 0.002$

Comments:

- (1) Use the flexural strength, fb. The contribution of reinforcing bars can be neglected.
- (2) The contribution of concrete for tension can be neglected. Concrete in compression can be treated as an elastic body. Need to check the strain of compressive reinforcing bar.
- (3) The equivalent stress block $(0.85 \text{fc} \times 0.8 \text{x})$, Whitney's block can be used. It can be assumed that the strain of concrete in the extreme compressive fiber is equal to ¿cu. Check the strain of reinforcing bars.
- (4) In this case, the following stress-strain relationship has to be used.

$$0 \le \epsilon'_{c} \le \epsilon'_{o} \qquad \sigma'_{c} = 0.85 \, f_{c}' \Bigg[\, \, 2 \Bigg(\frac{\epsilon'_{c}}{\epsilon'_{o}} \Bigg) - \Bigg(\frac{\epsilon'_{c}}{\epsilon'_{o}} \Bigg)^{2} \, \, \Bigg]$$

$$\epsilon'_{o} < \epsilon'_{c} \le \epsilon'_{cu}$$
 $\sigma'_{c} = 0.85 f'_{c}$

Calculate the difference between M_{u1} and M_{u2} and evaluate the effectiveness of the equivalent stress block.