2.Transmission Line

2-1.Transmission-line equations

$$
\begin{aligned}
& \frac{d V(z)}{d z}=-Z_{d} I(z) \quad\left(Z_{d}=R+j \omega L\right) \\
& \frac{d I(z)}{d z}=-Y_{d} V(z) \quad\left(Y_{d}=G+j \omega C\right) \\
& V=V_{1} e^{-x}+V_{2} e^{+x}=V_{i} e^{+x}+V_{r} e^{-x} \\
& I=\frac{1}{Z_{c}}\left(V_{1} e^{-x}-V_{2} e^{+x}\right)=\frac{1}{Z_{c}}\left(V_{i} e^{+x}-V_{r} e^{-x}\right)
\end{aligned}
$$

where propagation constant and characteristic impedance are given by

$$
\begin{aligned}
& \gamma=\sqrt{Z_{d} Y_{d}}=\sqrt{(R+j \omega L)(G+j \omega C)}=\alpha+j \beta \\
& \frac{Z_{d}}{\gamma}=\sqrt{\frac{Z_{d}}{Y_{d}}}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}=Z_{c}
\end{aligned}
$$

2-2.Reflection coefficient and input impedance

Since the load impedance is given by

$$
Z_{L}=\frac{V(0)}{I(0)}=Z_{c} \frac{V_{i}+V_{r}}{V_{i}-V_{r}}
$$

the reflection coefficient is defined by

$$
\frac{V_{r}}{V_{i}}=\frac{Z_{L}-Z_{c}}{Z_{L}+Z_{c}}=S_{v}(0)
$$

The impedance observed at an arbitrary position is given by

$$
Z(y)=Z_{c} \frac{Z_{L}+Z_{c} \tanh \gamma}{Z_{c}+Z_{L} \tanh \gamma y}
$$

In case of loss-less transmission line, the impedance is given by

$$
Z(y)=R_{c} \frac{Z_{L}+j R_{c} \tan \beta y}{R_{c}+j Z_{L} \tan \beta y}
$$

2-3.Standing wave ratio

$$
\rho=\frac{|V(y)|_{\max }}{|V(y)|_{\min }}=\frac{1+|S(0)|}{1-|S(0)|}
$$

2-4. $\lambda / 4$ impedance transformer
The following relation holds in a loss-less transmission line.

$$
\begin{aligned}
& z\left(l+\frac{\lambda}{4}\right)=\frac{z_{L}+j \tan \beta\left(l+\frac{\lambda}{4}\right)}{1+j z_{L} \tan \beta\left(l+\frac{\lambda}{4}\right)}=\frac{j z_{L} \tan \beta l+1}{j \tan \beta l+z_{L}}=\frac{1}{z(l)} \\
& Z\left(l+\frac{\lambda}{4}\right) Z(l)=R_{c}^{2}
\end{aligned}
$$

The load resistance R_{L} can be matched to the line with the characteristic impedance R_{c} by using a $\lambda / 4$ segment of transmission line with a characteristic impedance

$$
R_{x}=\sqrt{R_{c} R_{L}}
$$

2-5.Smith chart

