Pattern Information Processing

 パターン情報処理Masashi Sugiyama
（Department of Computer Science）杉山 将（計算工学専攻）

Contact：W8E－505 sugi＠cs．titech．ac．jp
http：／／sugiyama－www．cs．titech．ac．jp／～sugi／

Diagram of Supervised Learning ${ }^{2}$

Model is a set of functions from which $\hat{f}(x)$ is searched.

Notation

$\square f(x)$:Learning target function
$\square \mathcal{D} \subset \mathbb{R}^{d}$:Domain of $f(\boldsymbol{x})$
$\square \boldsymbol{x}_{i}$:Training input point $\boldsymbol{x}_{i} \stackrel{i . i . d .}{\sim} p(\boldsymbol{x})$
$\square y_{i}=f\left(\boldsymbol{x}_{i}\right)+\epsilon_{i} \quad$:Training output value
$\square \epsilon_{i}$:zero-mean noise $\mathbb{E}_{\epsilon} \epsilon_{i}=0$
$\left.\square\left(\boldsymbol{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$:Training examples
$\square \hat{f}(\boldsymbol{x})$:Learned function
$\square \mathcal{M}$:Model

3 Important Problems

$J=\int_{\mathcal{D}}\left(\hat{f}\left(\boldsymbol{x}_{t e s t}\right)-f\left(\boldsymbol{x}_{t e s t}\right)\right)^{2} p\left(\boldsymbol{x}_{t e s t}\right) d \boldsymbol{x}$
\square Active learning: $\min _{\{x, n} J$

$$
\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}
$$

Model selection: $\min _{\mathcal{M}} J$

■ Learning method: min J $\hat{f} \in \mathcal{M}$

Today's Plan

-Linear models / Kernel models

- Least-squares learning
- Justification in realizable cases
- Justification in unrealizable cases

Linear/Non-Linear Models

- Model is a set of functions from which learning result functions are searched.
- We use a family of functions $\hat{f}(\boldsymbol{x})$ parameterized by

$$
\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)^{\top}
$$

\square Linear model: $\hat{f}(\boldsymbol{x})$ is linear w.r.t. $\boldsymbol{\alpha}$
■ Non-linear model: Otherwise

Linear Models

$$
\hat{f}(\boldsymbol{x})=\sum_{i=1}^{p} \alpha_{i} \varphi_{i}(\boldsymbol{x})
$$

$\square\left\{\varphi_{i}(\boldsymbol{x})\right\}_{i=1}^{p}$:Linearly independent functions For example, when $d=1$

- Polynomial

$$
1, x, x^{2}, \ldots, x^{p-1}
$$

- Trigonometric polynomial

$$
1, \sin x, \cos x, \ldots, \sin k x, \cos k x
$$

$$
p=2 k+1
$$

Multi-Dimensional Linear Models ${ }^{8}$

- For multidimensional input $d>1$, tensor product could be used.

$$
\begin{gathered}
\hat{f}(\boldsymbol{x})=\sum_{i_{1}=1}^{p^{\prime}} \sum_{i_{2}=1}^{p^{\prime}} \cdots \sum_{i_{d}=1}^{p^{\prime}} \\
\alpha_{i_{1}, i_{2}, \ldots, i_{d}} \varphi_{i_{1}}\left(x^{(1)}\right) \varphi_{i_{2}}\left(x^{(2)} \cdots \varphi_{i_{d}}\left(x^{(d)}\right)\right. \\
\boldsymbol{x}=\left(x^{(1)}, x^{(2)}, \ldots, x^{(d)}\right)^{\top}
\end{gathered}
$$

The number of parameters is $p=\left(p^{\prime}\right)^{d}$, which increases exponentially w.r.t. d.
\square Infeasible for large d !

Additive Models

For large d, we have to reduce the number of parameters.

- Additive model:

$$
\hat{f}(\boldsymbol{x})=\sum_{j=1}^{d} \sum_{i=1}^{p^{\prime}} \alpha_{i, j} \varphi_{i}\left(x^{(j)}\right)
$$

\square The number of parameters is only $p=d p^{\prime}$.
\square However, this is too simple so its representation capability may not be rich enough in some application.

Kernel Models

Linear model:
$\left\{\varphi_{i}(\boldsymbol{x})\right\}_{i=1}^{p}$ do not depend on $\left\{\left(\boldsymbol{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$
\square Kernel model:

$$
\hat{f}(\boldsymbol{x})=\sum_{i=1}^{n} \alpha_{i} K\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right)
$$

$\square K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$:Kernel function
e.g., Gaussian kernel

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}}{2 c^{2}}\right)
$$

Kernel Models (cont.)

Put kernel functions at training input points.

Kernel Models (cont.)

$$
\hat{f}(\boldsymbol{x})=\sum_{i=1}^{n} \alpha_{i} K\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right)
$$

- The number of parameters is n, which is independent of the input dimensionality d.
\square Although kernel model is linear, the number of parameters depends on the number of parameters.
\square For this reason, mathematical treatment could be different from ordinary linear models (e.g., called non-parametric models in statistics).

Summary of Linear Models

- Tensor product

High flexibility, high complexity
\square Additive model
Low flexibility, low complexity
■ Kernel model
Middle flexibility, middle complexity

Learning Methods

- Linear learning methods:

Parameter vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)^{\top}$ is estimated linearly w.r.t.

$$
\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\top}
$$

Non-linear learning methods: Otherwise

Linear Learning for

 Linear and Kernel Models

 Linear and Kernel Models}

$$
\hat{f}(\boldsymbol{x})=\sum_{i=1}^{p} \alpha_{i} \varphi_{i}(\boldsymbol{x})
$$

\square In linear learning methods, a learned parameter vector is given by

$$
\hat{\boldsymbol{\alpha}}=\boldsymbol{L} \boldsymbol{y} \quad \boldsymbol{L}: \text { Learning matrix }
$$

$\square \boldsymbol{X}_{i, j}=\varphi_{j}\left(\boldsymbol{x}_{i}\right)$:Design matrix
\square Suppose $\operatorname{rank}(\boldsymbol{X})=p$

Least-Squares Learning

Try to make the output $\hat{f}\left(\boldsymbol{x}_{i}\right)$ as close to y_{i} as possible:

$$
\begin{aligned}
& \hat{\boldsymbol{\alpha}}_{L S}=\underset{\boldsymbol{\alpha}}{\operatorname{argmin}} J_{L S}(\boldsymbol{\alpha}) \\
& J_{L S}(\boldsymbol{\alpha})=\sum_{i=1}^{n}\left(\hat{f}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}
\end{aligned}
$$

\square Using the design matrix,

$$
J_{L S}(\boldsymbol{\alpha})=\|\boldsymbol{X} \boldsymbol{\alpha}-\boldsymbol{y}\|^{2}
$$

How to Obtain Solutions

Saddle-point equation:

$$
\begin{gathered}
\nabla J_{L S}\left(\hat{\boldsymbol{\alpha}}_{L S}\right)=2 \boldsymbol{X}^{\top}\left(\boldsymbol{X} \hat{\boldsymbol{\alpha}}_{L S}-\boldsymbol{y}\right)=0 \\
\hat{\boldsymbol{\alpha}}_{L S}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}
\end{gathered}
$$

Therefore, LS is linear learning.

$$
\begin{aligned}
& \hat{\boldsymbol{\alpha}}_{L S}=\boldsymbol{L}_{L S} \boldsymbol{y} \\
& \quad \boldsymbol{L}_{L S}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}
\end{aligned}
$$

Justification of LS

- Realizable: $f(\boldsymbol{x})$ is included in the model.

$$
f(\boldsymbol{x})=\sum_{i=1}^{p} \alpha_{i}^{*} \varphi_{i}(\boldsymbol{x})
$$

Generalization error:

$$
\begin{aligned}
& J= \int_{\mathcal{D}}(\hat{f}(\boldsymbol{x})-f(\boldsymbol{x}))^{2} p(\boldsymbol{x}) d \boldsymbol{x} \\
&=\left\|\boldsymbol{\alpha}-\boldsymbol{\alpha}^{*}\right\|_{\boldsymbol{U}}^{2} \\
& \quad U_{i, j}=\int_{\mathcal{D}} \varphi_{i}(\boldsymbol{x}) \varphi_{j}(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}
\end{aligned}
$$

Bias/Variance Decomposition

Expected generalization error:

$$
\begin{aligned}
\mathbb{E}_{\epsilon} J & =\mathbb{E}_{\epsilon}\left\|\boldsymbol{\alpha}-\boldsymbol{\alpha}^{*}\right\|_{\boldsymbol{U}}^{2} \\
& =\underbrace{\mathbb{E}_{\epsilon}\left\|\boldsymbol{\alpha}-\mathbb{E}_{\epsilon} \boldsymbol{\alpha}\right\|_{\boldsymbol{U}}^{2}}_{\text {Variance }}+\underbrace{\left\|\mathbb{E}_{\epsilon} \boldsymbol{\alpha}-\boldsymbol{\alpha}^{*}\right\|_{\boldsymbol{U}}^{2}}_{\text {Bias }}
\end{aligned}
$$

$\mathbb{E}_{\epsilon}:$ Expectation over noise

Unbiasedness and BLUE

- Unbiased estimator:

$$
\mathbb{E}_{\epsilon} \hat{\boldsymbol{\alpha}}=\boldsymbol{\alpha}^{*}
$$

■ Best linear unbiased estimator (BLUE): A linear estimator which has the smallest variance among all linear unbiased estimators.

$$
\begin{aligned}
& \mathbb{E}_{\epsilon}\left\|\hat{\boldsymbol{\alpha}}_{B L U E}-\mathbb{E}_{\epsilon} \hat{\boldsymbol{\alpha}}_{B L U E}\right\|^{2} \\
& \leq \mathbb{E}_{\epsilon}\left\|\hat{\boldsymbol{\alpha}}_{L U}-\mathbb{E}_{\epsilon} \hat{\boldsymbol{\alpha}}_{L U}\right\|^{2}
\end{aligned}
$$

for any linear unbiased estimator $\hat{\boldsymbol{\alpha}}_{L U}$
\square When $f(\boldsymbol{x})$ is realizable, $\hat{\boldsymbol{\alpha}}_{L S}$ is unbiased.
\square When realizable and iid noise, it is BLUE.

Efficiency

The Cramer-Rao lower bound: Lower bound of the variance of all (possibly non-linear) unbiased estimators.

- Efficient estimator: An unbiased estimator whose variance attains Cramer-Rao bound.
- For the linear regression model, CramerRao bound is

$$
\sigma^{2} \operatorname{tr}\left(\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right)_{\boldsymbol{U}}
$$

\square When $\epsilon_{i} \stackrel{i . i . d .}{\sim} N\left(0, \sigma^{2}\right)$, LS is efficient.

Justification of LS
 (Unrealizable Cases)

22
\square Unrealizable: $f(\boldsymbol{x})$ is not included in the model. $f(\boldsymbol{x})=g(\boldsymbol{x})+r(\boldsymbol{x})$

Asymptotic Unbiasedness and ${ }^{23}$ Efficiency

- Asymptotically unbiased estimator:

$$
\mathbb{E}_{\epsilon} \hat{\boldsymbol{\alpha}} \rightarrow \boldsymbol{\alpha}^{*} \text { as } n \rightarrow \infty
$$

\square Asymptotically efficient estimator: An unbiased estimator whose variance asymptotically attains Cramer-Rao's lower bound.
LS estimator is asymptotically unbiased.
\square When $\epsilon_{i} \stackrel{i . i . d}{\sim} N\left(0, \sigma^{2}\right)$, LS estimator is asymptotically efficient.

Example of LS

$$
\hat{f}(x)=\sum_{i=1}^{p} \alpha_{i} \varphi_{i}(x)
$$

- Trigonometric polynomial model $1, \sin x, \cos x, \ldots, \sin 15 x, \cos 15 x \quad(p=31)$

Small noise

Large noise

