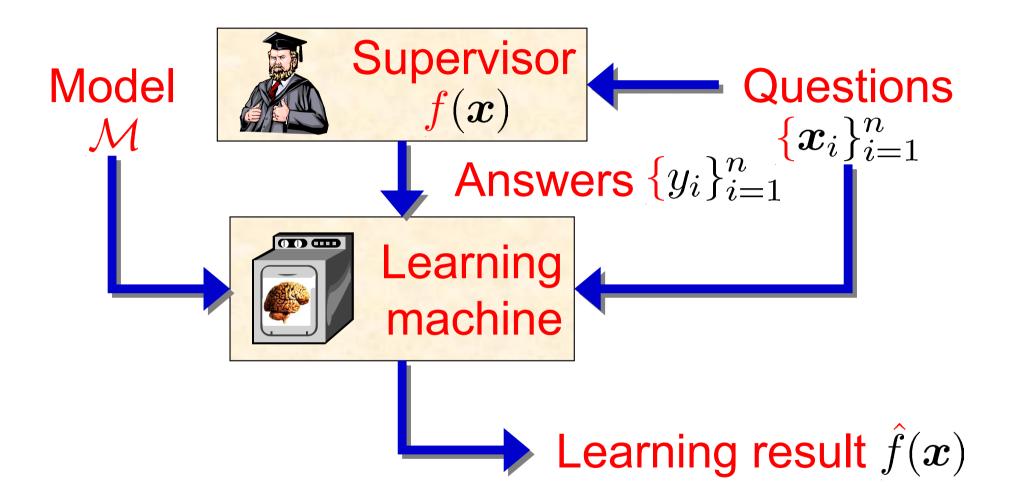
Pattern Information Processing パターン情報処理

Masashi Sugiyama (Department of Computer Science) 杉山 将(計算工学専攻)

Contact: W8E-505 sugi@cs.titech.ac.jp

http://sugiyama-www.cs.titech.ac.jp/~sugi/

Diagram of Supervised Learning²



Model is a set of functions from which $\hat{f}(x)$ is searched.

Notation

- f(x):Learning target function $\square \mathcal{D} \subset \mathbb{R}^d$: Domain of $f(\boldsymbol{x})$ **x_i: Training input point** $x_i \stackrel{i.i.d.}{\sim} p(x)$ $y_i = f(x_i) + \epsilon_i$: Training output value ϵ_i :zero-mean noise $\mathbb{E}_{\epsilon}\epsilon_i = 0$ $\{(x_i, y_i)\}_{i=1}^n$: Training examples $\hat{f}(\boldsymbol{x})$:Learned function
- \mathcal{M} :Model

3 Important Problems

4

$$\boldsymbol{J} = \int_{\mathcal{D}} \left(\hat{f}(\boldsymbol{x}_{test}) - f(\boldsymbol{x}_{test}) \right)^2 p(\boldsymbol{x}_{test}) d\boldsymbol{x}$$

Active learning: $\min_{\{\boldsymbol{x}_i\}_{i=1}^n} J$

Model selection: $\min_{\mathcal{M}} J$

Learning method: $\min_{\hat{f} \in \mathcal{M}} J$

Today's Plan

Linear models / Kernel models
Least-squares learning

Justification in realizable cases
Justification in unrealizable cases

Linear/Non-Linear Models

Model is a set of functions from which learning result functions are searched.
We use a family of functions *f*(*x*) parameterized by

$$\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_p)^\top$$

Linear model: $\hat{f}(\boldsymbol{x})$ is linear w.r.t. $\boldsymbol{\alpha}$ Non-linear model: Otherwise

Linear Models

$$\hat{f}(\boldsymbol{x}) = \sum_{i=1}^{p} \alpha_i \varphi_i(\boldsymbol{x})$$

 $\{\varphi_i(\boldsymbol{x})\}_{i=1}^p$: Linearly independent functions For example, when d = 1 Polynomial $1, x, x^2, \dots, x^{p-1}$ Trigonometric polynomial 1, $\sin x$, $\cos x$, ..., $\sin kx$, $\cos kx$ p = 2k + 1

Multi-Dimensional Linear Models^o

For multidimensional input d > 1, tensor product could be used.

$$\hat{f}(\boldsymbol{x}) = \sum_{i_1=1}^{p'} \sum_{i_2=1}^{p'} \cdots \sum_{i_d=1}^{p'} \cdots \sum_{i_d=1}^{p'} \alpha_{i_1,i_2,\dots,i_d} \varphi_{i_1}(\boldsymbol{x}^{(1)}) \varphi_{i_2}(\boldsymbol{x}^{(2)}) \cdots \varphi_{i_d}(\boldsymbol{x}^{(d)})$$

$$\mathbf{x} = (x^{(1)}, x^{(2)}, \dots, x^{(d)})^{\top}$$

The number of parameters is p = (p')^d, which increases exponentially w.r.t. d.
Infeasible for large d !

Additive Models

For large d, we have to reduce the number of parameters.

Additive model:

$$\hat{f}(\boldsymbol{x}) = \sum_{j=1}^{d} \sum_{i=1}^{p'} \alpha_{i,j} \varphi_i(\boldsymbol{x}^{(j)})$$

The number of parameters is only p = dp'.

However, this is too simple so its representation capability may not be rich enough in some application.

Kernel Models

Linear model:

 $\{\varphi_i(\boldsymbol{x})\}_{i=1}^p$ do not depend on $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$ Kernel model:

00

$$\hat{f}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i K(\boldsymbol{x}, \boldsymbol{x}_i)$$

 $\mathbf{I} K(\mathbf{x}, \mathbf{x'})$:Kernel function

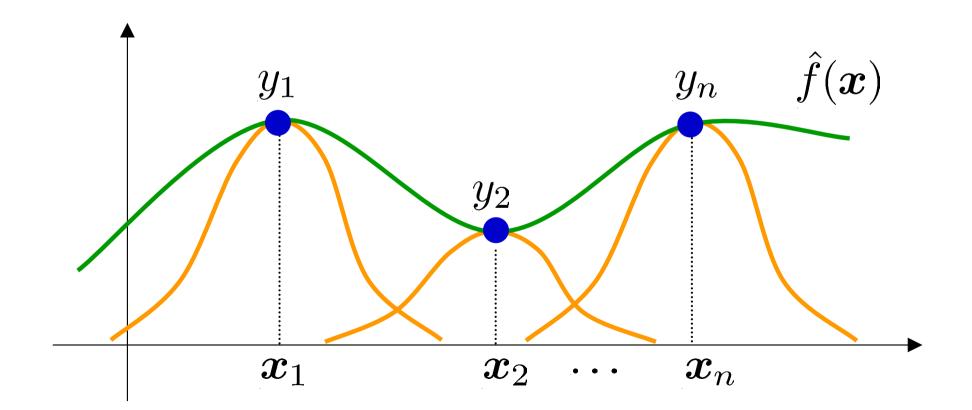
e.g., Gaussian kernel

$$K(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2c^2}\right)$$

Kernel Models (cont.)

11

Put kernel functions at training input points.



Kernel Models (cont.) $\hat{f}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i K(\boldsymbol{x}, \boldsymbol{x}_i)$

12

- The number of parameters is n, which is independent of the input dimensionality d.
- Although kernel model is linear, the number of parameters depends on the number of parameters.
- For this reason, mathematical treatment could be different from ordinary linear models (e.g., called non-parametric models in statistics).

Summary of Linear Models

Tensor product High flexibility, high complexity Additive model Low flexibility, low complexity Kernel model Middle flexibility, middle complexity

Learning Methods

Linear learning methods:

Parameter vector $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_p)^\top$ is estimated linearly w.r.t.

$$\boldsymbol{y} = (y_1, y_2, \dots, y_n)^\top$$

Non-linear learning methods: Otherwise

Linear Learning for Linear and Kernel Models

$$\hat{f}(\boldsymbol{x}) = \sum_{i=1}^{p} \alpha_i \varphi_i(\boldsymbol{x})$$

In linear learning methods, a learned parameter vector is given by

 $\hat{\alpha} = Ly$ *L*:Learning matrix $X_{i,j} = \varphi_j(x_i)$:Design matrix Suppose rank (X) = p

Least-Squares Learning

16

Try to make the output $\hat{f}(x_i)$ as close to y_i as possible:

$$\hat{\alpha}_{LS} = \operatorname*{argmin}_{oldsymbol{\alpha}} J_{LS}(oldsymbol{lpha})$$

$$J_{LS}(oldsymbol{lpha}) = \sum_{i=1}^{n} \left(\hat{f}(oldsymbol{x}_i) - y_i \right)^2$$

Using the design matrix,

$$J_{LS}(\boldsymbol{\alpha}) = \|\boldsymbol{X}\boldsymbol{\alpha} - \boldsymbol{y}\|^2$$

How to Obtain Solutions

Saddle-point equation:

$$\nabla J_{LS}(\hat{\boldsymbol{\alpha}}_{LS}) = 2\boldsymbol{X}^{\top}(\boldsymbol{X}\hat{\boldsymbol{\alpha}}_{LS} - \boldsymbol{y}) = 0$$
$$\hat{\boldsymbol{\alpha}}_{LS} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$$

Therefore, LS is linear learning.

$$\hat{oldsymbol{lpha}}_{LS} = oldsymbol{L}_{LS} oldsymbol{y}$$

 $oldsymbol{L}_{LS} = (oldsymbol{X}^{ op} oldsymbol{X})^{-1} oldsymbol{X}^{ op}$

Justification of LS (Realizable Cases)

Realizable: f(x) is included in the model.

$$f(\boldsymbol{x}) = \sum_{i=1}^{p} \alpha_{i}^{*} \varphi_{i}(\boldsymbol{x})$$

Generalization error:

$$egin{aligned} J &= \int_{\mathcal{D}} \left(\hat{f}(oldsymbol{x}) - f(oldsymbol{x})
ight)^2 p(oldsymbol{x}) doldsymbol{x} \ &= \|oldsymbol{lpha} - oldsymbol{lpha}^*\|_{oldsymbol{U}}^2 \ &U_{i,j} = \int_{\mathcal{D}} arphi_i(oldsymbol{x}) arphi_j(oldsymbol{x}) p(oldsymbol{x}) doldsymbol{x} \end{aligned}$$

Bias/Variance Decomposition¹⁹

Expected generalization error: $\mathbb{E}_{\epsilon} J = \mathbb{E}_{\epsilon} \| \alpha - \alpha^* \|_{U}^{2}$ $= \mathbb{E}_{\epsilon} \| \alpha - \mathbb{E}_{\epsilon} \alpha \|_{U}^{2} + \| \mathbb{E}_{\epsilon} \alpha - \alpha^* \|_{U}^{2}$ Variance Bias

 \mathbb{E}_{ϵ} : Expectation over noise

Unbiasedness and BLUE

Unbiased estimator:

$$\mathbb{E}_{oldsymbol{\epsilon}}\hat{oldsymbol{lpha}}=oldsymbol{lpha}^*$$

Best linear unbiased estimator (BLUE): A linear estimator which has the smallest variance among all linear unbiased estimators. $\mathbb{E}_{\epsilon} \| \hat{\alpha}_{BLUE} - \mathbb{E}_{\epsilon} \hat{\alpha}_{BLUE} \|^{2}$ $\leq \mathbb{E}_{\epsilon} \| \hat{\alpha}_{LU} - \mathbb{E}_{\epsilon} \hat{\alpha}_{LU} \|^{2}$

for any linear unbiased estimator $\hat{\alpha}_{LU}$ When f(x) is realizable, $\hat{\alpha}_{LS}$ is unbiased. When realizable and iid noise, it is BLUE.

Efficiency

- The Cramer-Rao lower bound: Lower bound of the variance of all (possibly non-linear) unbiased estimators.
- Efficient estimator: An unbiased estimator whose variance attains Cramer-Rao bound.
- For the linear regression model, Cramer-Rao bound is $2 + ((\mathbf{x} \mathbf{x}^\top \mathbf{x}) - 1)$

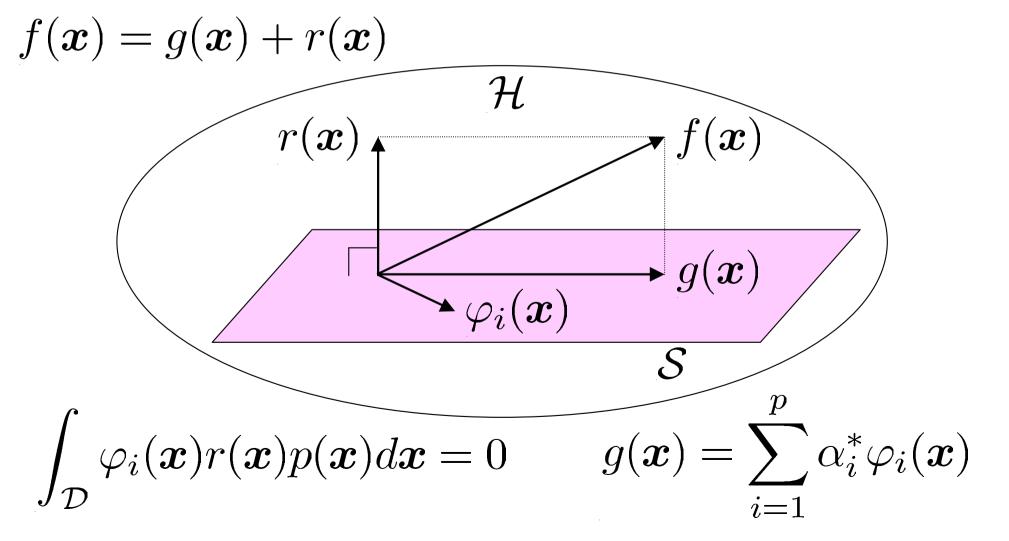
$$\sigma^2 \operatorname{tr}((\boldsymbol{X}^{\top}\boldsymbol{X})^{-1})_{\boldsymbol{U}}$$

When $\epsilon_i \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$, LS is efficient.

Justification of LS (Unrealizable Cases)

22

Unrealizable: f(x) is not included in the model.



Asymptotic Unbiasedness and ²³ Efficiency

Asymptotically unbiased estimator: $\mathbb{E}_{\epsilon}\hat{\alpha} \to \alpha^* \text{ as } n \to \infty$

- Asymptotically efficient estimator: An unbiased estimator whose variance asymptotically attains Cramer-Rao's lower bound.
- LS estimator is asymptotically unbiased.
 When ε_i ^{i.i.d.} N(0, σ²), LS estimator is asymptotically efficient.

