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Diagram of Supervised LearningDiagram of Supervised Learning
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NotationNotation

:Learning target function
:Domain of 

:Training input point
:Training output value

:zero-mean noise
:Training examples

:Learned function
:Model
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3 Important Problems3 Important Problems

Active learning:

Model selection:

Learning method:
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Today’s PlanToday’s Plan

Linear models / Kernel models 
Least-squares learning

Justification in realizable cases
Justification in unrealizable cases
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Linear/Non-Linear ModelsLinear/Non-Linear Models

Model is a set of functions from which 
learning result functions are searched.
We use a family of functions         
parameterized by

Linear model: is linear w.r.t.
Non-linear model: Otherwise
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Linear ModelsLinear Models

:Linearly independent functions
For example, when

Polynomial

Trigonometric polynomial
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Multi-Dimensional Linear ModelsMulti-Dimensional Linear Models
For multidimensional input            , tensor 
product could be used.

The number of parameters is               , 
which increases exponentially w.r.t.     . 
Infeasible for large     !
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Additive ModelsAdditive Models

For large    , we have to reduce the number 
of parameters.
Additive model:

The number of parameters is only           .
However, this is too simple so its 
representation capability may not be rich 
enough in some application.
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Kernel ModelsKernel Models

Linear model:
do not depend on 

Kernel model:

:Kernel function
e.g., Gaussian kernel
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Kernel Models (cont.)Kernel Models (cont.)

Put kernel functions at training input points.
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Kernel Models (cont.)Kernel Models (cont.)

The number of parameters is    , which is 
independent of the input dimensionality     .
Although kernel model is linear, the number of 
parameters depends on the number of 
parameters.
For this reason, mathematical treatment could 
be different from ordinary linear models (e.g., 
called non-parametric models in statistics).
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Summary of Linear ModelsSummary of Linear Models

Tensor product
High flexibility, high complexity
Additive model
Low flexibility, low complexity
Kernel model
Middle flexibility, middle complexity
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Learning MethodsLearning Methods

Linear learning methods:
Parameter vector                                   
is estimated linearly w.r.t.

Non-linear learning methods: Otherwise



15Linear Learning for
Linear and Kernel Models

Linear Learning for
Linear and Kernel Models

In linear learning methods, a learned 
parameter vector is given by

:Learning matrix
:Design matrix

Suppose
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Least-Squares LearningLeast-Squares Learning

Try to make the output           as close to    
as possible:

Using the design matrix,
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How to Obtain SolutionsHow to Obtain Solutions

Saddle-point equation:

Therefore, LS is linear learning.



18Justification of LS
(Realizable Cases)
Justification of LS

(Realizable Cases)
Realizable:          is included in the model.

Generalization error:
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Bias/Variance DecompositionBias/Variance Decomposition

Expected generalization error:

Variance Bias

:Expectation over noise
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Unbiasedness and BLUEUnbiasedness and BLUE

Unbiased estimator:

Best linear unbiased estimator (BLUE): A 
linear estimator which has the smallest 
variance among all linear unbiased estimators.

When         is realizable,          is unbiased.
When realizable and iid noise, it is BLUE.
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EfficiencyEfficiency

The Cramer-Rao lower bound: Lower bound 
of the variance of all (possibly non-linear) 
unbiased estimators.
Efficient estimator: An unbiased estimator 
whose variance attains Cramer-Rao bound.
For the linear regression model, Cramer-
Rao bound is

When                         , LS is efficient.



22Justification of LS
(Unrealizable Cases)

Justification of LS
(Unrealizable Cases)

Unrealizable:          is not included in the model.



23Asymptotic Unbiasedness and 
Efficiency

Asymptotic Unbiasedness and 
Efficiency

Asymptotically unbiased estimator:

Asymptotically efficient estimator: An 
unbiased estimator whose variance 
asymptotically attains Cramer-Rao’s lower 
bound.
LS estimator is asymptotically unbiased.
When                         , LS estimator is 
asymptotically efficient.
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Example of LSExample of LS

Trigonometric polynomial model

Small noise Large noise
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