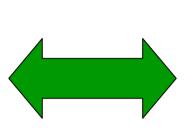
Pattern Information Processing パターン情報処理

Masashi Sugiyama (Department of Computer Science) 杉山 将(計算工学専攻)

Contact: W8E-505 sugi@cs.titech.ac.jp

http://sugiyama-www.cs.titech.ac.jp/~sugi/

3 Topics in Learning Research



Understanding the brain (physiology, psychology, neuroscience) **Developing learning machines**

(computer and electronic engineering)

Clarifying learning mathematically (computer and information science)

Three Types of Learning

Supervised learning: Estimating underlying rule with supervisor's help. Unsupervised learning: Finding meaningful structure in data without supervisor. Reinforcement learning: Estimating underlying rule without supervisor.

3

Small Reports

Write your original applications of

- supervised learning,
- unsupervised learning,
- reinforcement learning.
- Relating to your own research topics would be a good idea.

Deadline: Nov. 12 (Fri)

Today's Plan

Supervised learning

3 important topics in supervised learning

- Active learning
- Model selection
- Learning method
- Generalization error

Supervised Learning

- Supervisor has some knowledge.
- We (or a learning machine) want to learn supervisor's knowledge.
- We can not directly access to supervisor's knowledge.
- We are allowed to ask questions to the supervisor and he answers your questions.

Supervised Learning (cont.)

- Through pairs of questions and answers, we want to acquire the entire knowledge of our supervisor.
- Then, we can answer to the questions that we have never learned, i.e., we have the generalization capability.

Regression/Classification

8

Suppose questions are real values.
When the answers are

Discrete: Classification
Continuous: Regression

We focus on regression.

Regression as Function Approximation

- Regression can be regarded as a function approximation problem.
- There is an unknown function $f(\boldsymbol{x})$.
- We are given its samples $\{(x_i, y_i)\}_{i=1}^n$, where output values are generally noisy:

$$y_i = f(\boldsymbol{x}_i) + \epsilon_i$$

We want to estimate f(x). $\hat{f}(x)$: Learned function

¹⁰ as Function Approximation (cont.)

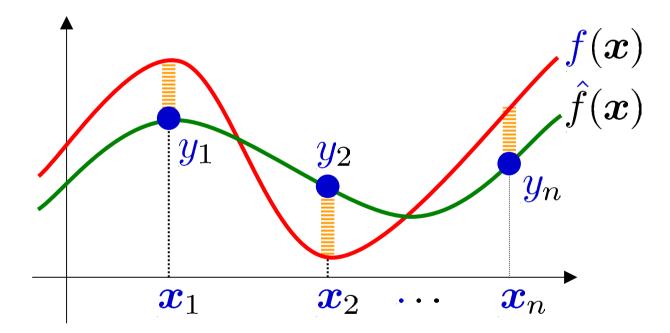
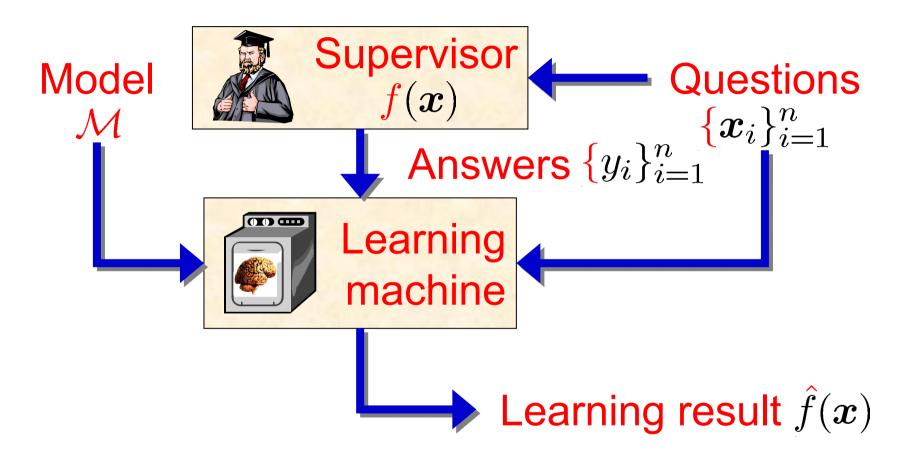


Diagram of Supervised Learning¹¹



Model is a set of functions from which $\hat{f}(x)$ is searched.

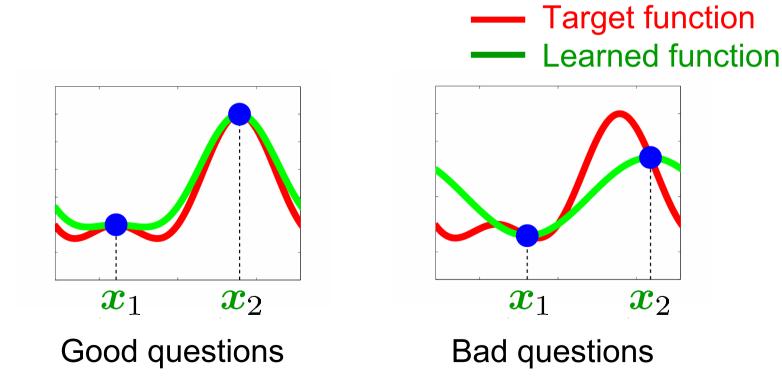
3 Important Topics in Supervised Learning

Active learning: What are the best questions to ask?
Model selection: What is the best model to use?
Learning method: What is the best way to learn?

Active Learning

13

For obtaining good learning results, questions should be determined appropriately.



Active Learning: Analogy to Real Life

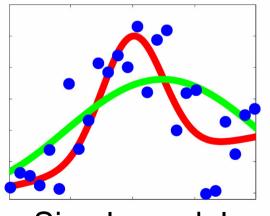
It is not effective to passively attend the course.

Actively asking questions would be more effective for learning.

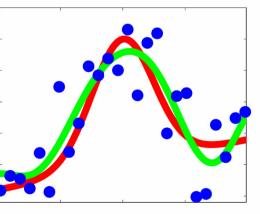
Model Selection

For obtaining good learning results, model should be determined appropriately.

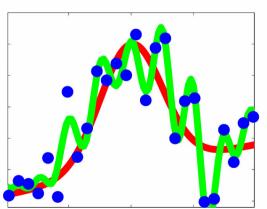
Target function
Learned function



Simple model



Appropriate model



Complex model

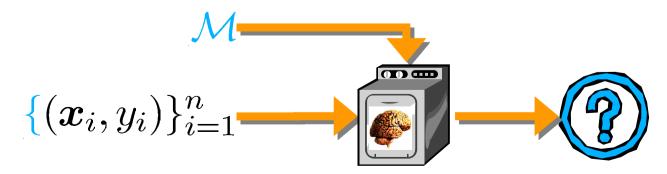
Model Selection: Analogy to Real Life

- A model represents your ambition.
- You learn a fixed amount of material.
- If you are less ambitious, you are not capable of even memorizing what you have learned. Therefore, you can not find the truth.
- If you are too ambitious, you can perfectly memorize what you have learned. However, you can not get the whole picture.
- If you are appropriately ambitious, then you can understand the truth.

Learning Methods

Now you have

- A model, from which your learning result function is searched.
- Training examples, which are pairs of questions and their answers.
- A learning method is a rule to specify a function in the model based on the training examples.



Learning Methods: Analogy to Real Life

- Now you have
 - Appropriate ambition for learning
 - Good questions and their answers
- What you should do is to just start studying!
- Effectively using your ambition and teaching materials is the key to success.

Formal Notation

 $f(\mathbf{x})$:Learning target function $\mathcal{D} \subset \mathbb{R}^d : \text{Domain of } f(\boldsymbol{x})$ **z**_i :Training input point $x_i \stackrel{i.i.d.}{\sim} p(x)$ $y_i = f(x_i) + \epsilon_i$: Training output value • ϵ_i :Additive random noise $\mathbb{E}_{\epsilon}\epsilon_i = 0$ $\{(x_i, y_i)\}_{i=1}^n$: Training examples $\hat{f}(\boldsymbol{x})$:Learned function $-\mathcal{M}$:Model

Generalization Error

- We want to obtain $\hat{f}(x)$ such that output values at unlearned test input points t can be accurately estimated.
- Suppose $\boldsymbol{t} \stackrel{i.i.d.}{\sim} p(\boldsymbol{x})$
- Expected test error (generalization error):

$$J = \int_{\mathcal{D}} \left(\hat{f}(\boldsymbol{t}) - f(\boldsymbol{t}) \right)^2 p(\boldsymbol{t}) d\boldsymbol{t}$$

Goal: Obtain $\hat{f}(\boldsymbol{x})$ such that J is minimized.

Formal Description of Problems²¹

$$\boldsymbol{J} = \int_{\mathcal{D}} \left(\hat{f}(\boldsymbol{x}_{test}) - f(\boldsymbol{x}_{test}) \right)^2 p(\boldsymbol{x}_{test}) d\boldsymbol{x}$$

Active learning: $\min_{\{\boldsymbol{x}_i\}_{i=1}^n} J$

Model selection: $\min_{\mathcal{M}} J$

Learning method: $\min_{\hat{f} \in \mathcal{M}} J$