地球環境科学(第10回)

プラズマ化学反応の環境・エネルギー分野への応用 2005年1月13日(木)

大気圧非平衡プラズマの特性と エネルギー・環境分野への応用

Characterization of Atmospheric Pressure Non-equilibrium Plasmas and Applications to the Field of Energy and Environment

CONTENTS 1. Introduction

- 2. Overview of DBD and APG
- 3. Applications of DBD and APG
- 4. Characterization of DBD and APG by OES
- 5. Concluding remarks

Ken OKAZAKI and Tomohiro NOZAKI Tokyo Institute of Technology, Japan

Atmospheric Pressure Non-equilibrium Plasmas (1)

(Plasma temperature vs Pressure)

Atmospheric pressure non-equilibrium plasmas (2)

Alternative to vacuum processing by a simple system

Applications of DBD (1)

(Various types of DBD)

Tokyo Institute of Technology

4

M

Applications of Pulsed DBD (2)

(Efficient Ozone Generation by Pulsed DBD)

School of Engineering

Applications of DBD (3)

(Chemical Vapor Deposition of SiO₂ Thin Film)

Pulsed DBD assisted CVD in TEOS/O₂ system

Tetra-ethlortho-silicate: Si(OC₂H₅)

Void-free and excellent step coverage over high aspect ratio trenches

6

Application of DBD (4)

(Simultaneous Removal of $NO_{X'}$, SO_X and Fly Ash in Pulverized Coal Combustion)

Tokyo Institute of Technology

A

Application of DBD (4) cont'd

(De-NO_x, De-SO_x Characteristics and Fly Ash Removal Efficiency)

Removal Efficiency for NOx and SOx

Actual coal combustion

Simulated gas (NOx)

100SO2 Removal Efficiency (%) 75 Res.time = 2.0s Res.time = 4.0s 50 NOx 25 Dis.condition: Wet, + Squ.pulse 0 0 10 2030 **40** Input Power (W)

(for longer residence time)

Tokyo Institute of Technology

A

Drastic NOx removal mechanism (simulated gas)

Application of DBD (5)

(Direct Synthesis of Methanol from Methane and Water-vapor Mixture)

→ ten order higher than equilibrium value

エクセルギー再生におけるメタノールの利点

CH3OH + H2O = CO2 + 3H2

Heat value:

727 kJ/mol \longrightarrow 286 x 3 = 858 kJ/mol Exergy enhancement

Low quality thermal energy

$$= \frac{G}{H} = 6\%$$
(corresponding to100)

エクセルギー再生の原理

Tokyo Institute of Technology

A

Application of DBD (6)

(Steam Reforming of Methane: CH₄ Conversion and H₂ Selectivity)

 $CH_4 + 2H_2O = CO_2 + 4H_2$

Products selectivity

School of Engineering

School of Engineering

17

1

School of Engineering Tok

A

Application of APG (1)

(Carbon Nanotube Synthesis using APG)

Application of APG (1) cont'd

(Raman Spectra for Nano-structured Carbon)

School of Engineering

単結晶SiをNi(20nm)でメッキ

基板温度 700 合成時間 20 min ガス組成 He 90% H₂/CH₄=5 電圧波形 **正弦波**

Tokyo Institute of Technology

\$

Experimental of Optical Emission Spectroscopy

Advantage of Rotational Band of CH in Hydrocarbon Plasmas

Rotational band of CH (431.5 nm)

- Simple spectral structure of CH
- Simple equipment
- Hydrocarbons

Time-averaged gas temperature distribution

- Thermal structure of CH₄-base DBD and APG
- Thermalization processes
- Energy deposition to plasmas
- Characterize chemical reactions

Experimental Procedure

School of Engineering

Rotational Band of CH ($A^2 \Delta \rightarrow X^2 \Pi$: 431 nm)

I
$$\propto$$
 S 4 exp $\left(-\frac{E_{r}hc}{kT_{r}}\right)$
I : Intensity
S : Line strength

v : wave number

- **E**_r : Rotational term
- T_r: Rotational

temperature

Thermal equilibrium

Boltzmann Plot

Radiative lifetime CH (²∆):
 2 ~ 5 ns
 Collision time: 0.1 ns

Thermal equilibrium for CH (²Δ)

Rotational temperature = gas temperature

Average Gas Temperature Increase: ΔT_{ave}

Energy balance C_{Pw}G_w∆T_w 0.5mm Duct wall Cu Feed gas Plasma C_{Pg}G_g∆T_{ave} Glass 0.5mm Cu C_{Pw}G_w∆T_w [C₂]G_a∆H_{C2} 10mm 1 Input power Lissajous figure

- 2 Heat transfer to metallic $C_{Pw}G_{w}\Delta T_{w}$
- 3 Heat transfer to dielectric $C_{Pw}G_w \Delta T_w$
- 4 Endothermic enthalpy for C_2H_4, C_2H_6 [C₂]G_g Δ H_{C2}
- 5 Increase in sensible heat $C_{Pg}G_{g}\Delta T_{ave}$

$$T_{rot} = T_0 + \varDelta T_{ave} + \varDelta T_{plasma}$$

∆**T**_{plasma:} : local and temporal gas temp. increase due to plasma formation

Average gas temp. increase

$$\Delta T_{ave} = \frac{(1) - \{(2) + (3) + (4)\}}{C_{Pg}G_g}$$

Gas temp. increase in plasmas

$$\Delta \mathbf{T} \approx \mathbf{T_r} - \mathbf{T_0} = \Delta \mathbf{T_{ave}} + \Delta \mathbf{T_{plasma}}$$

en

Rotational Temperature Sensitivity $T_{rot} = T_0 + \Delta T_{ave} + \Delta T_{plasma}$

School of Engineering

Rotational Temperature vs Gas Velocity $\Delta T = T_{rot} - T_0 = \Delta T_{ave} + \Delta T_{plasma}$

DBD : $T_{rot} - T_0$ DBD : ΔT_{ave} APG : $T_{rot} - T_0$ APG : ΔT_{ave}

 ΔT : not sensitive to gas velocity

DBD: large ΔT_{plasma} due to localized streamer

APG: small ΔT_{plasma} due to uniform discharge

29

Rotational Temperature vs Input Power $\Delta T = T_{rot} - T_0 = \Delta T_{ave} + \Delta T_{plasma}$

(DBD, AC 80 kHz)

Thermal Structure of DBD : ΔT_{plasma} (1)

School of Engineering

Tokyo Institute of Technology

Thermal Structure of DBD : ΔT_{plasma} (2)

Thermal Structure of APG : ΔT_{plasma} (1)

Tokyo Institute of Technology

33

1

School of Engineering

Thermal Structure of APG : ΔT_{plasma} (2)

- △*T*_{plasma}: temperature increase Negative pulsed voltage
- Wall temperature 20 °C

due to single pulsed APG

Significant temperature increase in the negative glow region only near metal electrode ~ 120 °C

School of Engineering

Characterization of DBD

<u>Sine 80 kHz</u>, CH_4 only \longrightarrow DBD

Streamer radius ~ 100 μm

Nano-second current pulses

y Gas phase reaction

1.0 mm

Glass surface

- A: Cathode fall
- **B: Streamer body**
- C: Dark space
- **D: Surface discharge**

$$\mathbf{T}_{rot} - \mathbf{T}_{0} = \Delta \mathbf{T}_{ave} + \Delta \mathbf{T}_{plasma} (\mathbf{y})$$

Net Temperature Increase in DBD: $\Delta T_{ave} + \Delta T_{plasma}$

Characterization of APG

Sine 80 kHz, CH_4 : He = 2 : 98 \longrightarrow APG

Cathode glow near metallic electrode ~ 50 μm

dielectric electrode ~ 250 µm

11

Tokyo Institute of Technology

37

A

Net Temperature Increase in APG: $\Delta T_{ave} + \Delta T_{plasma}$

Significant gas temperature increase especially in the negative glow region near metal electrode

Tokyo Institute of Technology

38

Concluding Remarks (1)

(Various Applications of DBD and APG)

- 1. Efficient <u>ozone</u> generation (pulsed DBD)
- 2. High step coverage in PECVD (pulsed DBD)
- Simultaneous removal of <u>NOx, SOx, Fly Ash</u> in pulverized coal combustion (Pulsed DBD + Corona + Semi-wet)
- 4. Direct synthesis of <u>methanol</u> from CH4/H2O mixture (pulsed DBD + thin rube)
- 5. Steam <u>reforming</u> of methane (DBD + catalyst)
- 6. Multi-walled <u>carbon nano-tube</u> (APG + catalyst) APG: bifurcation mechanism, stability more applications alternative to vacuum process

Concluding Remarks (2) (Thermal Structure of DBD and APG)

1. Rotational temperature of CH represents gas temperature of atmospheric pressure nonequilibrium plasmas with the following relationship

 $T_{rot} = T_0 + \varDelta T_{ave} + \varDelta T_{plasma}$

- 2. DBD and APG is clearly distinguished from thermal structure, i.e. ∆T_{plasma} (temperature level and profile)
 APG : negative glow formation ~ 120 °C
 DBD : streamer body ~ 220 °C
- 3. Pulsed plasmas minimize excess temperature increase in reaction field

40