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Characterization of Atmospheric Pressure Non-equilibrium Plasmas
and Applications to the Field of Energy and Environment
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Atmospheric Pressure Non-equilibrium Plasmas (1)

(Plasma temperature vs Pressure)
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e non-equilibrium
Te >> Tg
e low energy consumption
e high reactivity
e simple reactor system

|

Spreading
to new applications
e marerial conversion

e energy system
e enviromental protection

No detail characterization : DBD «=— APG
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Atmospheric pressure non-equilibrium plasmas (2)

DBD: Dielectric Barrier Discharge \
Streamer {1-10ns)
Simple
configuration
P ‘uhllagehalfcyclal
) #5'" Discharge period
APG: Atmospheric Pressure Glow-discharge )
[ eoscumne | [* Freq. > 1-10 kHz
" He > 90%
v,

Alternative to vacuum processing by a simple system
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Applications of DBD (1)

(Various types of DBD)

m Basic configuration
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Applications of Pulsed DBD (2)

(Efficient Ozone Generation by Pulsed DBD)
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by ultra-short pulsed DBD

o3
LERA,
ML

AC(50Hz)

10°

10! 102
Energy [J]

@' School of Engineering

103

PW =400 ns

6 ’ " T ' T '
3 .
0

3 r =

Current (A)  Voltage (V)
o

0 200 400 600

Time (ns)

t[s] Pulse AC

42.8 . ©
21.4 - L
8.6

4.3 A

5

Tokyo Institute of Technology l"x"'



Applications of DBD (3)

(Chemical Vapor Deposition of SiO, Thin Film)

Pulsed DBD assisted CVD in TEOS/O, system
Tetra-ethlortho-silicate: Si(OC,H;)

Void-free and excellent step coverage
over high aspect ratio trenches
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Application of DBD (4)

(Simultaneous Removal of NO,, SO, and Fly Ash
in Pulverized Coal Combustion)

Coal Feeder Pulsed DBD

High voltage power source

— Flow Meter Q +
—g3E=0 i , Corona

esiccators N
Cooli Flow Meter .
Water Semi-wet reactor
§ . $56 Stainless tubg/ — Water in
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Gas analysis
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Application of DBD (4) cont’d

(De-NO,, De-SO, Characteristics and
Fly Ash Removal Efficiency)

T-coal combustion gas
100
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Removal Efficiency for NOx and SOx

Simulated gas (nox)
(for longer residence time)

Actual coal combustion
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Drastic NOx removal mechanism (simulated gas)
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Application of DBD (5)

(Direct Synthesis of Methanol from Methane
and Water-vapor Mixture)

| 10
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1% yield of methanol power supply
— ten order higher than equilibrium value
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CH30OH + H20 = C0O2 + 3H2

Heat value:

727 kJ/mol — 286 x 3 =858 kJ/mol

Exergy enhancement

Low quality thermal energy

4 N
n=2S _ gy
L AH ( corresponding to100 ))
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CH,OH + H,0 - CO, + 3H,
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Application of DBD (6)

(Steam Reforming of Methane:
CH, Conversion and H, Selectivity)

CH, + 2H,0 = CO, + 4H, Products selectivity
100 100 4
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c el
el £ 50 2 f:
2 £ 2
c o™
8 40 | E ::Ic::]
Q
3 » 25 1
(&) 20 F
0 0 0
DBD DBD DBD
1 10 100 + 7
Specific input energy [eV/molecule] Ni/SiO, Si0; Ni/SiO,
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CH,4 conversion [%]
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DBD + Ni/SiO, (600°C)

CH, i, + Ni/SiO, = CH, + H.

¢ Regenerate vibration energy
¢ " Low temperature enthalpy
¢ Increase reaction rate

¢ H,0/CH, ~2 : H,0 ,;,
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Application of APG (1)

(Carbon Nanotube Synthesis using APG)

Growth parameters

AC|125 kHz

Temperature 600 °C
G— Ni coated (20 nm) 2 mm Pressure 760 Torr
substrate ROROROE SRRSO R 1 .
................................. mm He:HZ:CH4 90:10:1 Ccmln-l
SuUsS q) 32 Thermo- Inpu'[ power 5 WCm'2
P couples ) i
. Growth time 5~30min

" Heater
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Application of APG (1) cont’d

(Raman Spectra for Nano-structured Carbon)

15min deposition, 760Torr,
He 91% (APG)
He 48% (DBD)

D
G

#1
APG

600 'C, H,/CH, = 10

45 500 'C, H,/CH, = 10

2000 1500 1000 [em'] 500
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Si Ni 20nm

700
20 min
He 90%

H,/CH,
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0.2 um/min
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Experimental of Optical Emission Spectroscopy

Advantage of Rotational Band of CH
in Hydrocarbon Plasmas

Rotational band of CH (431.5nm)

m Simple spectral structure of CH
®m Simple equipment
®m Hydrocarbons

Time-averaged gas temperature distribution

®m Thermal structure of CH,-base DBD and APG
® Thermalization processes

®m Energy deposition to plasmas

m Characterize chemical reactions

23
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Experimental Procedure

m Pulse (2 ps, 10 kHz, 5 ~ 20 W)
memsms  \/ery small pulse duty:
almost no average gas temperature increase

‘v‘ Continuous Sine (80 kHz, 5 ~ 25 W)
Cooling water I

2 mm
U=1.0m/s _ : Transverse
DBD : | 100 um - 10 points
CH4 — 100 % |::> ...... 4@' ,m
APG : :' _ o ICCD
"He=2" - ] ™
CH,:He=2:98 20 210 mm NS
Spectrometer
Cooling water Electrode gap: 1 mm
24
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Rotational Band of CH ( A°A — X?II : 431 nm )
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Boltzmann Plot
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Radiative lifetime CH (?A):
2~5ns
& Collision time: 0.1 ns

Thermal equilibrium for CH (°A)

Rotational temperature
= gas temperature
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Average Gas Temperature Increase: AT,

®m Energy balance

Toor = Top+AT,

ro ave

+ AT,

lasma

AT . local and temporal gas
temp. increase due to

plasma formation

plasma:

- CrwGwATy N [Ca1GAHe 1 Average gas temp. increase
10mm @ -{2)+(3)+(4)}
ATave = Co G
1 Input power Lissajous figure Pg™g

2 Heat transfer to metallic CruwGuATw m Gas temp. increase in plasmas

AT = T, —Tg = ATaye + ATpjasma

3 Heat transfer to dielectric Cp,,Gu AT

Endothermic enthalpy for
4 C,]G,AH
CzHs, CzH S

5 Increase in sensible heat CpyG AT,
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Rotational Temperature Sensitivity
7, t — 7-0 + A Tave + A Tplasma

ro
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Rotational Temperature vs Gas Velocity
AT = Typp - Tp = AT 0 + AT,

ro ave lasma

150
< T oDBD: 7,,.-7,
8 120 ?n—Lﬂ\ e DBD: ATave
S CIAPG : T, - T
o 90
I= m APG: A7,
g 60 - ATplalﬁma
® AT : not sensitive to gas velocity
2 30
g DBD: large ATpIasrr_]a
= 0 due to localized streamer
0 2 4 6 8 APG: small AT pjasma
Mean velocity [m/s] due to uniform discharge
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due to just increase of
number of streamers

1
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Thermal Structure of DBD : AT ,/,6ma (1)

Pulse, CH, only — DBD Pulse frequency 10kHz
HWFM * 2us Pulse width (HWFM) 2 us
004 /\ ;h;g; 16 Pulse duty 2%
:gg: - J/ Vo ; No power input : 98 %
20 I Niied 0 Pulse interval : 100 ps
Current :
by »
-40 - .
Trot B TO = ATave T ATplasma (y)
— A
4 ~0
E 1.0 mm _
- Trot (y) B TO - ATplasma (y)
v - 0
@) Glagg surface
Positive pulse  Negative pulse 31
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Thermal Structure of DBD : AT ,,,5ma (2)

Metal electrode

m 14 W
A21W

1 mm

Glass surface

0 100 200 300
AT ,1asma - t€MpPETature increase
In a single streamer

m Positive pulsed voltage
m Wall temperature 20 °C

~ 220 €
Not sensitive to input power
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Thermal Structure of APG : AT ,1sma (1)

Pulse, CH,: He =2:98 — APG
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4— 1mm

(a)
Positive pulse

rot

Metal electrode _t Tiot- To=AT et ATpIasma y)

1.0 mm ~0

o 0 Trot (y) B TO = ATplasma (y)

- J I: -'.": |‘.l‘ " .'t'.“[' ‘ I"I
Glasrg,surface

Negative pulse
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Thermal Structure of APG : AT ,1.5ma (2)

y
- Metal electrode
m 4W
=
e A 8W
—
— S | <@ Glass surface
0 100 200 300
® Negative pulsed voltage  A47,,.,,: temperature increase
m Wall temperature 20 °C due to single pulsed APG

Significant temperature increase in the negative
glow region only near metal electrode ~ 120 <
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Characterization of DBD

Sine 80 kHz, CH, only — DBD

m Streamer radius ~ 100 pm T~ To=AT .+ ATpIasma (y)
® Nano-second current pulses

Y m Gas phase reaction

Metal electrode
A: Cathode fall

B: Streamer body

e half cycle I ‘

C:. Dark space

harge period !

<

D: Surface discharge

Glass surface
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Net Temperature Increase in DBD:
A Ta ve + 4 Tplasma

Trot B TO = ATave + ATplasma (y)

y

\ Metal electrode
® 15W
m 20 W
A 25W

- oL - :d\w ' @ Glass surface

0 100 200 300
AT qve *+ AT 51asma - NET tEMpPETrature increase
Significant gas temperature increase
Wall temperature 20°C due to large increase of AT,

especially in the center part of channel
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Characterization of APG

Sine 80 kHz, CH,: He =2:98 — APG

m Cathode glow near metallic electrode ~ 50 um

O " dielectric electrode ~ 250 pm
y TR T T T T T TRVE
.} go  Pos.current | | - 3]
Metal electrode AT N [
o -1 Z— 40 . . . . . M
e -
'

Dielectric +
(a) (b)

Negative Positive
current current
pulse pulse

@ School of Engineering

" Glass sugface

Both
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Net Temperature Increase in APG:
A Ta ve + 4 7-plézsma

Trot B TO = ATave + ATplasma (y)

Metal electrode

® 15W
m20W
A 25W

o L , <@ Glass surface

0 100 200 300
Wall temperature 20°C A7+ A 7, . net temperature increase

ave lasma -

Significant gas temperature increase especially in the
negative glow region near metal electrode
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Concluding Remarks (1)
(VVarious Applications of DBD and APG)

1. Efficient ozone generation (pulsed DBD)
High step coverage in PECVD (pulsed DBD)
3. Simultaneous removal of NOx, SOx, Fly Ash in pulverized
coal combustion
(Pulsed DBD + Corona + Semi-wet)
4. Direct synthesis of methanol from CH4/H20 mixture
(pulsed DBD + thin rube)
5. Steam reforming of methane (DBD + catalyst)
6. Multi-walled carbon nano-tube (APG + catalyst)
APG: bifurcation mechanism, stability
more applications alternative to vacuum process

N
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Concluding Remarks (2)
(Thermal Structure of DBD and APG)

1. Rotational temperature of CH represents gas
temperature of atmospheric pressure non-
equilibrium plasmas with the following relationship

Toor = Tp+AT,,c +A4T,

ro ave plasma

2. DBD and APG is clearly distinguished from thermal
structure, i.e. AT, o, (temperature level and profile)
APG : negative glow formation ~ 120 °C
DBD : streamer body ~ 220 °C

3. Pulsed plasmas minimize excess temperature
Increase in reaction field
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