Fuzzy theory 1. Overview 2. Fuzzy sets 3. Operations for fuzzy sets 4. Fuzzy I/O 5. Fuzzy functions 6. Fuzzy rules 7. Fuzzy control

1 Overview

Fuzzy theory began with a paper on "fuzzy sets", written by Prof. L.A. Zadeh in 1965.

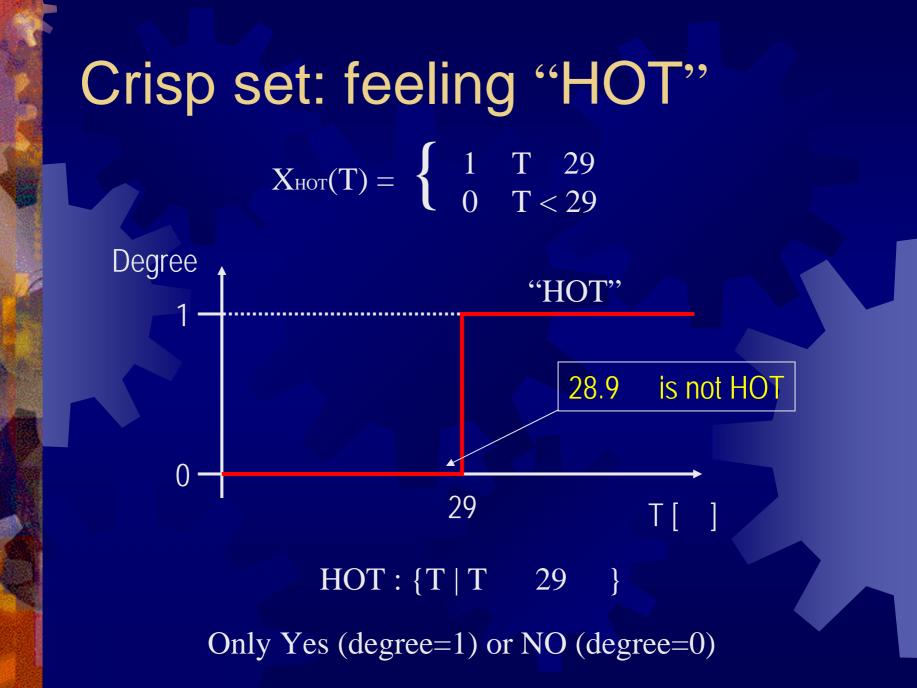
Fuzzy sets are those sets whose boundary is not clear. Fuzzy logics are calculation procedures on fuzzy sets.

A technology in which the whole system can be roughly defined, that is "fuzzy theory" was proposed.

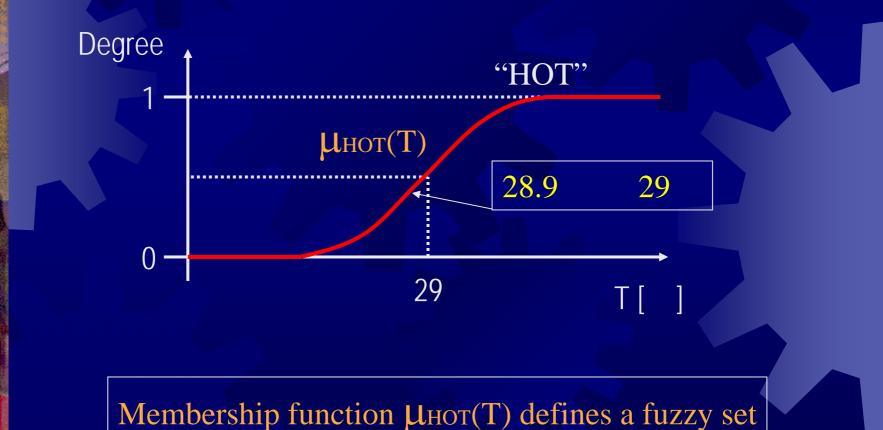
ATTENTION

 Fuzzy system is deterministic. Neither stochastic nor ambiguous. 2 Fuzzy sets
Ordinal set = Crisp set

Fuzzy set

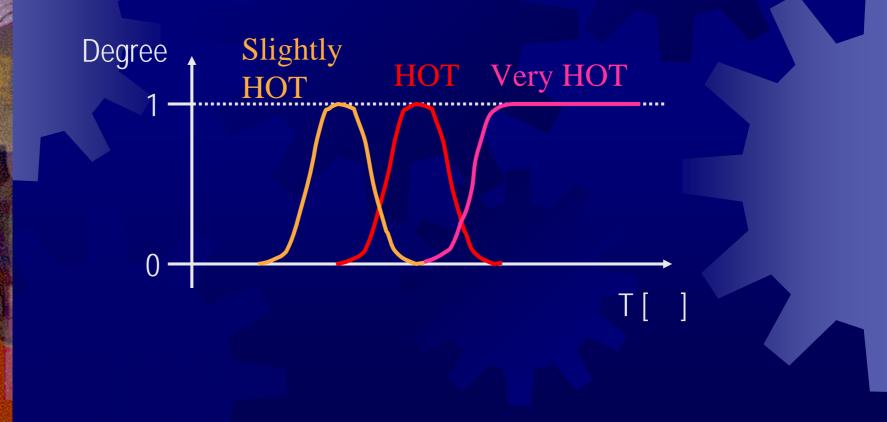


Fuzzy set: feeling "HOT"

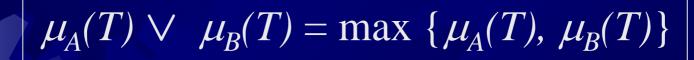


Definition of many fuzzy sets

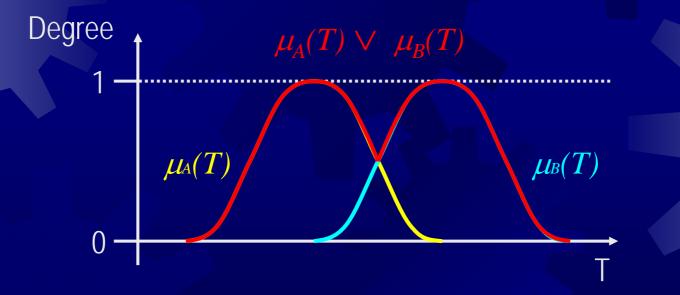
Only by defining each membership function, we can express many status.



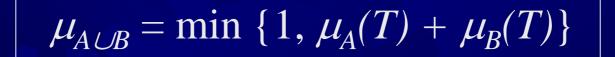
3 Operations for fuzzy sets



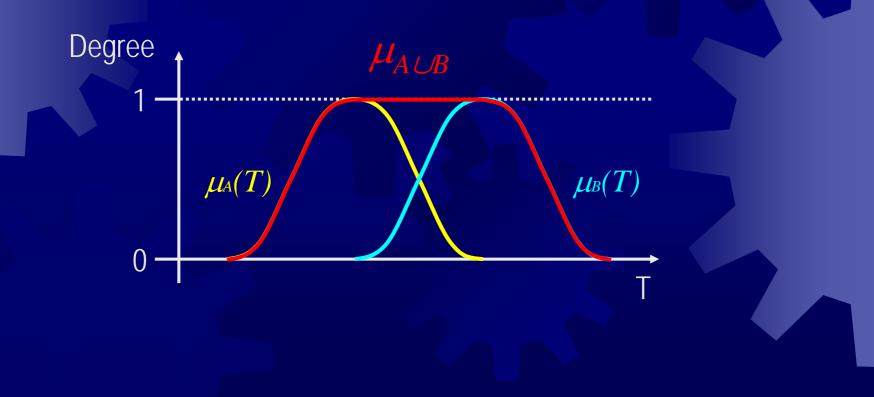
Similar to "OR" logic.

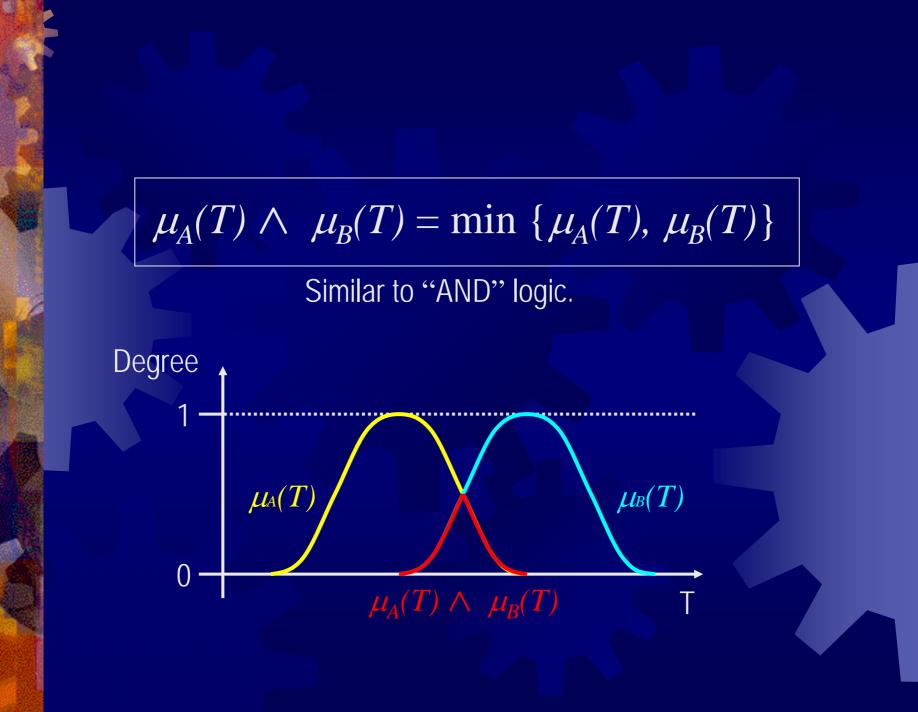


Set of maximum values in $\{\mu_A(T), \mu_B(T)\}$



Saturated sum of μA and μB





Fuzzy Input and Output

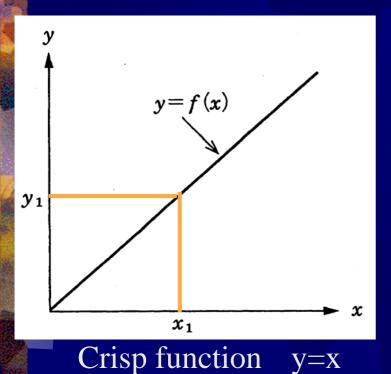
Let us input a fuzzy set into a crisp function

A crisp function y = f(x)Let us input a fuzzy set A e.g. y = 2x+1y=f(x), x A

Output of the function becomes a membership function.

Examples will appear on the next slide.

Examples (1)

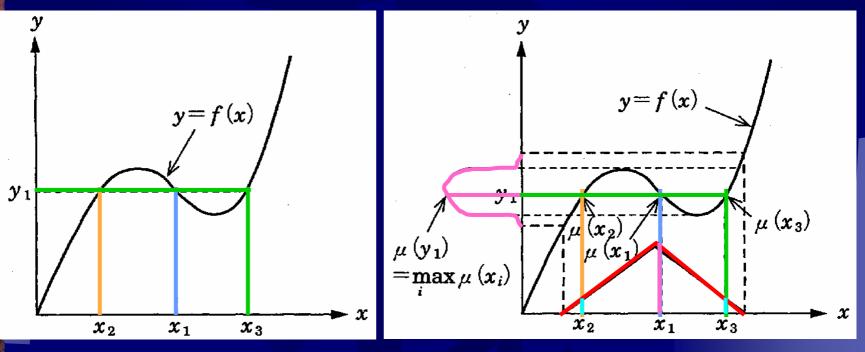


 $f(\mathbf{A})$ $\mu(y_1)$ $\mu(x_1)$ x_1

Input a fuzzy set A

Membership function (output)

Examples (2)



Crisp inputs

Input a fuzzy set

 $\mu(y_1) = \max\{ \mu(x_1), \mu(x_2), \mu(x_3) \}$, where $y_1 = f(x_1) = f(x_2) = f(x_3)$

5 Fuzzy functions

z (Degree)

X

 $z=\mu_f(y,x)$

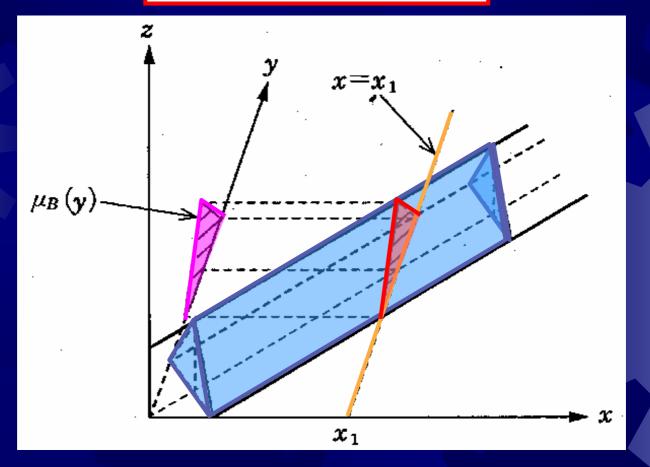
Fuzzication

Fuzzy set of functions

A fuzzy function becomes a "cylinder".

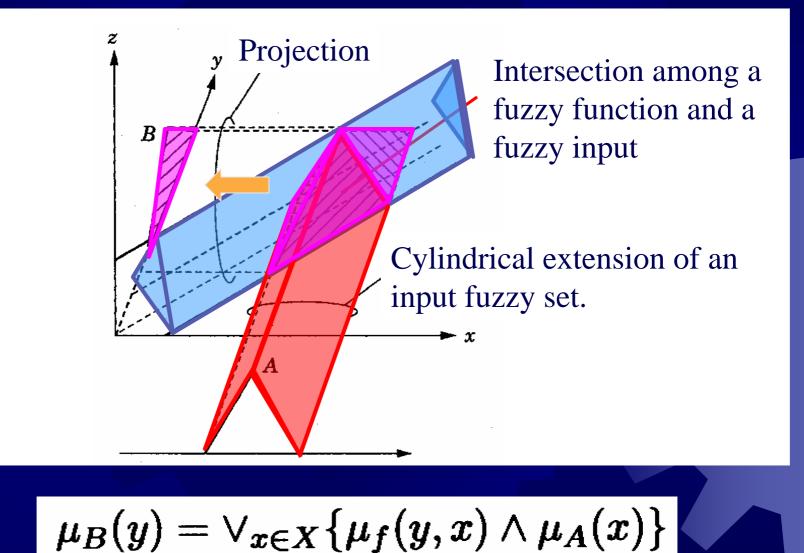
A crisp input to a fuzzy function

$$\mu_B(y) = \mu_f(y, x_1)$$



Output is obtained by an intersection among a fuzzy function and an input.

Input a fuzzy set to a fuzzy function



6 Fuzzy rules

Rules between fuzzy sets

IF x is R then y is C

Crisp sets

μΒ

IF x µA then y

Fuzzy sets

Illustration of fuzzy rules

Projection

Intersection

A fuzzy rule: an intersection among cylindrical extensions of input and output fuzzy sets Input A' to the fuzzy rule

Input a fuzzy set to many fuzzy rules

Projections

Intersections

Two fuzzy rules: A1 and A2

Input a fuzzy set A'

7 Fuzzy control
Control system of a "cooler"
Input: temperature T []
Output: driving voltage V

Designing fuzzy sets
Defining fuzzy rules
Defuzzication

Procedures of fuzzy control

Input T(crisp input)

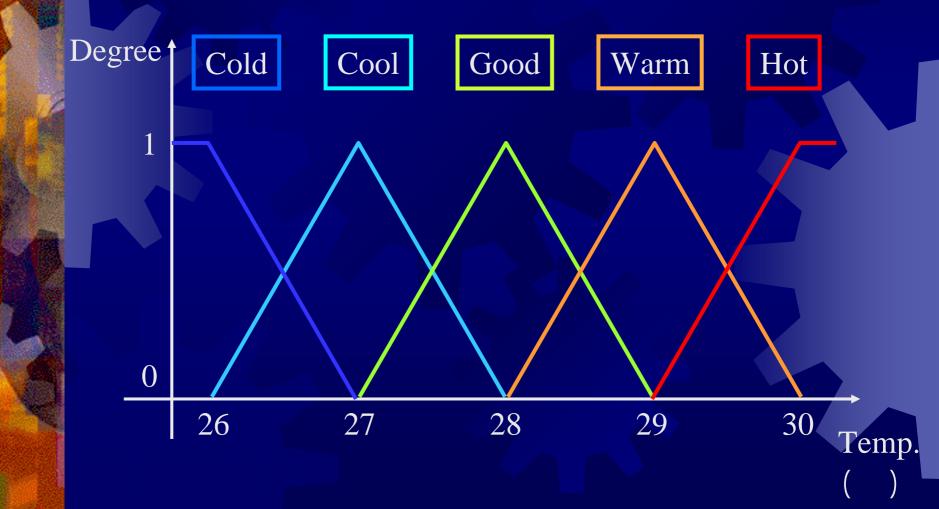
Output of fuzzy rules(fuzzy)

Evaluate fitness

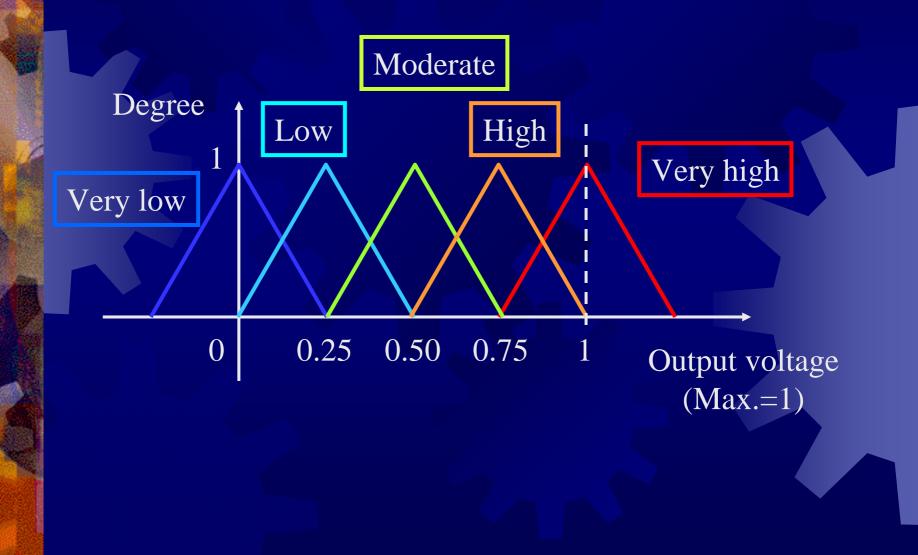
Defuzzication (crisp output)

Driving voltage(crisp)

Fuzzy sets for feelings



Fuzzy sets for outputs



Fuzzy rules

Defining relationship between inputs and outputs

Input (feeling)	Output (voltage)	
Cold	Very l	low
Cool		W
Good	Moder	rate
Warm	Hig	h
Hot	Very l	nigh

Operation of fuzzy rules

if $x_i(\mu_{xi}(t))$ then $y_i(\mu_{yi}(v))$

If x_i then y_i

"t" temp., *"v"* voltage

Calculation of output

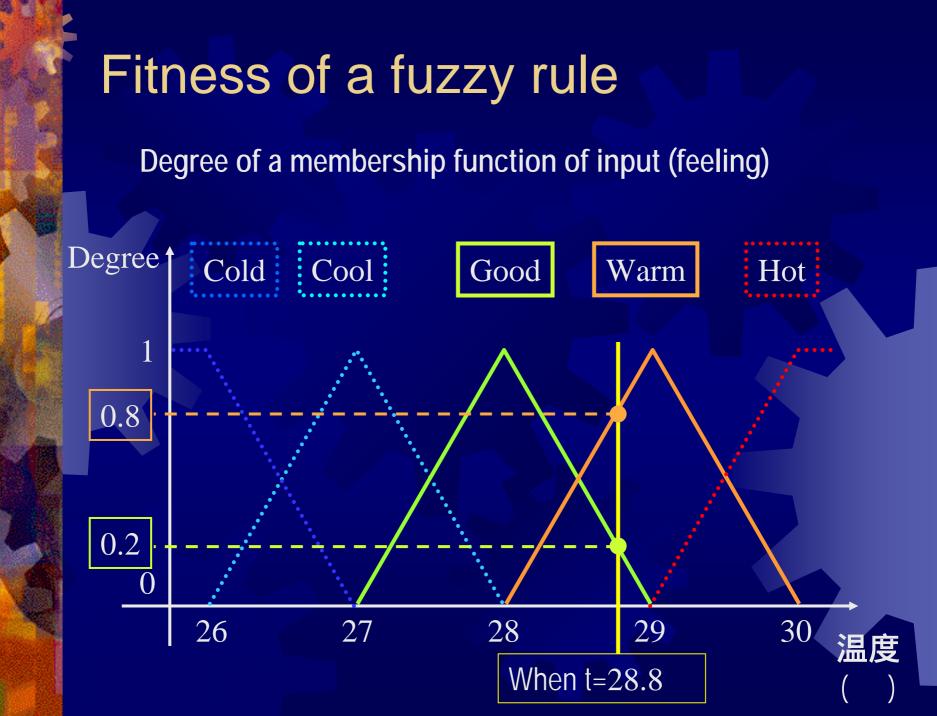
For all rules (relationship between x_i and y_i)

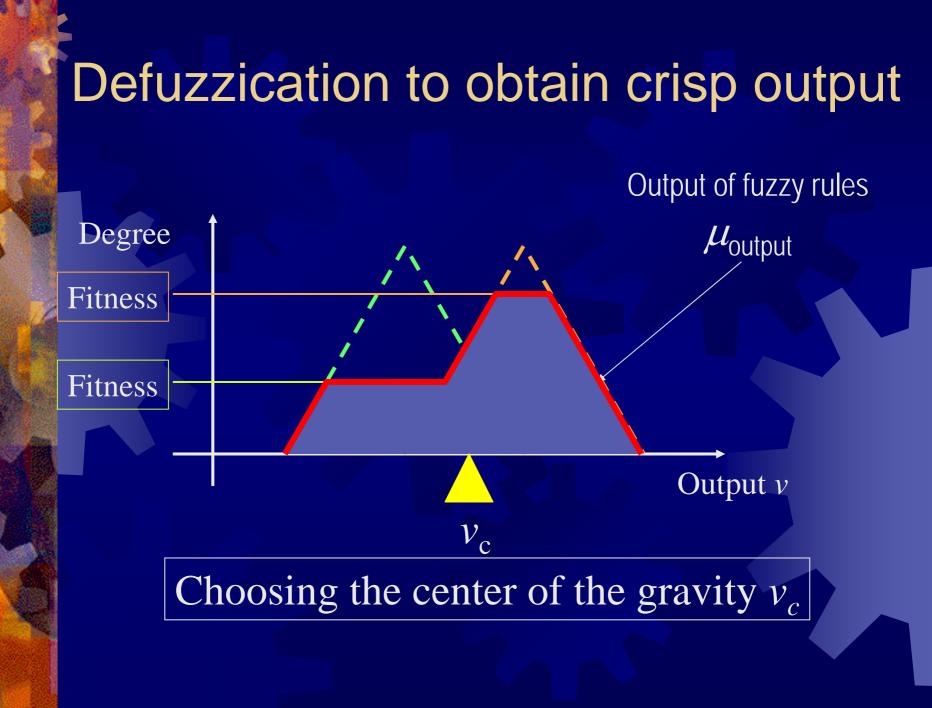
$$\mu_{\text{output}}(v) = \bigvee_{i} (\mu_{yi}(v) \land \mu_{xi}(t))$$

in other words,

 $\mu_{\text{output}}(v) = \max_{i} \{ \min\{ \mu_{yi}(v), \mu_{xi}(t) \} \}$

When we input *t* (*crisp*), we obtain a membership function of *v*.



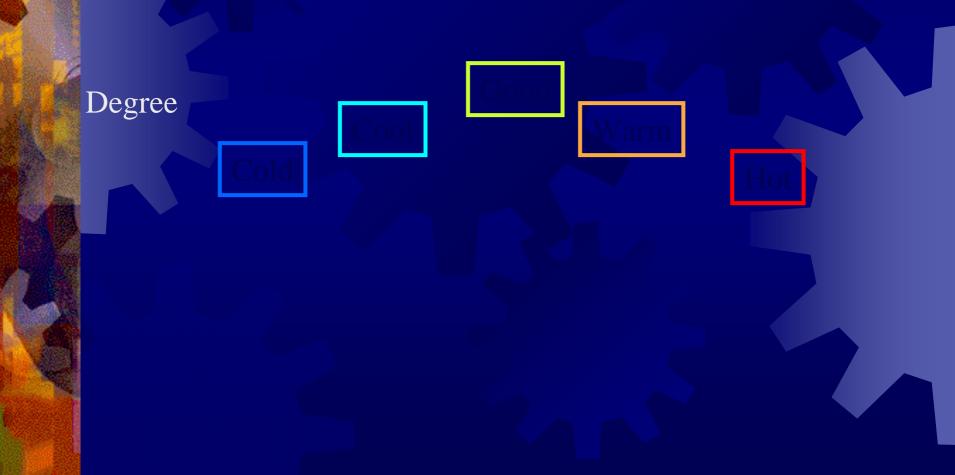


Control output for input T

Driving voltage

 Only setting several fuzzy sets, a fuzzy controller generates continuous output function of input T.

Changing membership functions for inputs



... then, a shape of a control function is changed.

Driving voltage

Conclusion

 "Fuzzy" is a tool for designers. It does not contribute to the performance of controller.

 We can handle "feelings" by fuzzy sets without finding "crisp" boundaries.

 Only by changing membership functions, we can arrange a control function.