## 6 MRACS on discrete time systems

### 6.1 Formulation

In this section, we apply MRACS to discrete time systems. At first, we formulate plants and models by (1) and (2).

$$
\begin{align*}
\text { Plant : } & A\left(q^{-1}\right) y(k)=q^{-d} B\left(q^{-1}\right) u(k)  \tag{1}\\
& \left\{\begin{array}{c}
d \geq 1: \\
A\left(q^{-1}\right)= \\
B\left(q^{-1}\right)= \\
\text { Mimedelay }\left(q^{-d} y(k)=y(k-d)\right) \\
\text { Model }: b_{1} q^{-1}+\cdots+a_{n} q^{-n}
\end{array}: \begin{array}{ll}
A_{M}\left(q^{-1}\right) y_{m}(k)=q_{m} q^{-m} B_{M}\left(q^{-1}\right) u_{m}(k)
\end{array}\right. \\
& \begin{cases}A_{M}\left(q^{-1}\right)= & 1+a_{m 1} q^{-1}+\cdots+a_{m n} q^{-n} \\
B_{M}\left(q^{-1}\right)= & b_{m 0}+b_{m 1} q^{-1}+\cdots+b_{m m} q^{-m}\end{cases} \tag{2}
\end{align*}
$$

, where $b_{m 0}>0, A_{M}\left(q^{-1}\right)$ is stability polynominal.
We want $e_{1}(k)=y_{m}(k)-y(k) \rightarrow 0$ for $k \rightarrow \infty$.

### 6.2 Diophantine equation

Next, we introduce Diophantine equation (3) and non-minimal realization.

$$
\begin{equation*}
D\left(q^{-1}\right)=A\left(q^{-1}\right) R\left(q^{-1}\right)+q^{-d} H\left(q^{-1}\right) \tag{3}
\end{equation*}
$$

, where $D\left(q^{-1}\right)=1+d_{1} q^{-1}+\cdots+d_{n} q^{-n}$ is $n$ order monic stability polynominal that we can set arbitrary. Then $R\left(q^{-1}\right)$ and $H\left(q^{-1}\right)$ always exist.

$$
\begin{aligned}
& R\left(q^{-1}\right)=1+r_{1} q^{-1}+\cdots+r_{d-1} q^{-(d-1)} \\
& H\left(q^{-1}\right)=h_{0}+h_{1} q^{-1}+\cdots+h_{n-1} q^{-(n-1)}
\end{aligned}
$$

By multiplying (3) by $y(k)$,

$$
\begin{aligned}
D\left(q^{-1}\right) y(k) & =A\left(q^{-1}\right) R\left(q^{-1}\right) y(k)+q^{-d} H\left(q^{-1}\right) y(k) \\
& =q^{-d} B\left(q^{-1}\right) R\left(q^{-1}\right) u(k)+H\left(q^{-1}\right) y(k-d) \\
& =B\left(q^{-1}\right) R\left(q^{-1}\right) u(k-d)+H\left(q^{-1}\right) y(k-d) .
\end{aligned}
$$

Here, we introduce $\theta$, set of unknown parameters, and $\xi$, input and output data
$\theta^{T}=\left[b_{0}, b_{0} r_{1}+b_{1}, b_{0} r_{2}+b_{1} r_{1}+b_{2}, \cdots, b_{m} r_{d-1}, h_{0}, h_{1}, \cdots, h_{n-1}\right]$
$\xi^{T}=[u(k), u(k-1), \cdots, u(k-(m+d-1)), y(k), y(k-1), \cdots, y(k-(n-1))]$
, then we obtain (4) that denotes non-minimal realization.

$$
\begin{equation*}
D\left(q^{-1}\right) y(k)=\theta^{T} \xi(k) \tag{4}
\end{equation*}
$$

By the way, let us assme that order $n=2, d=2$. The Diohpantine equation (3) becomes

$$
1+d_{1} q^{-1}+d_{2} q^{-2}=\left(1+a_{1} q^{-1}+a_{2} q^{-2}\right)\left(1+r_{1} q^{-1}\right)+q^{-2}\left(h_{0}+h_{1} q^{-1}\right)
$$

By comparing coeficients, we can derive following equations.

$$
\left\{\begin{array}{l}
r_{1}=d_{1}-a_{1} \\
h_{0}=d_{2}-a_{2}-a_{2} d_{1}+a_{1}^{2} \\
h_{1}=a_{2}\left(a_{1}-d_{1}\right)
\end{array}\right.
$$

These equations mean that coeficients $r_{i}$ and $h_{j}$ depend on $A\left(q^{-1}\right)$ and $D\left(q^{-1}\right)$.
Let us get back to the system error $e_{1}(k)$. By multiplying $e_{1}(k)$ by $D\left(q^{-1}\right) q^{-d}$,

$$
\begin{align*}
D\left(q^{-1}\right) e_{1}(k+d) & =D\left(q^{-1}\right) y_{m}(k+d)-B\left(q^{-1}\right) R\left(q^{-1}\right) u(k)-H\left(q^{-1}\right) y(k) \\
& =D\left(q^{-1}\right) y_{m}(k+d)-\theta^{T} \xi(k) \tag{5}
\end{align*}
$$

, and we separate $b_{0}$ and $u(k)$ as

$$
\left\{\begin{aligned}
\theta^{T} & =\left[b_{0}, \bar{\theta}^{T}\right] \\
\xi^{T}(k) & =\left[u(k), \bar{\xi}^{T}(k)\right]
\end{aligned}\right.
$$

Then,

$$
\begin{equation*}
D\left(q^{-1}\right) e_{1}(k+d)=D\left(q^{-1}\right) y_{m}(k+d)-b_{0} u(k)-\bar{\theta}^{T} \xi(k) \tag{6}
\end{equation*}
$$

For $(6) \rightarrow 0$,

$$
\begin{equation*}
u(k)=\frac{1}{b_{0}}\left\{D\left(q^{-1}\right) y_{m}(k+d)-\bar{\theta}^{T} \xi(k)\right\} \tag{7}
\end{equation*}
$$

### 6.3 Direct control

Unknown parameters in (6) are $\hat{\theta}\left(\hat{b}_{0}(k)\right.$ and $\hat{\bar{\theta}}(k)$. We denotes $\hat{y}(k)$ that is calculated by means of expected values. Then, we define $\epsilon_{1}(k)$ :

$$
\begin{align*}
\epsilon_{1}(k) & =D\left(q^{-1}\right)(\hat{y}(k)-y(k)) \\
& =\phi^{T}(k) \xi(k-d) \tag{8}
\end{align*}
$$

where $\phi^{T}(k)=\hat{\theta}(k)-\theta$. This equation represents a case of deterministic identifier that has $W(p)=1$. So, we can apply algorithms of deterministic identifiers.

$$
\begin{gather*}
\hat{\theta}(k)=\hat{\theta}(k-1)-\Pi(k-1) \xi(k-d) \epsilon_{1}(k)  \tag{9}\\
\Pi(k)=\frac{1}{\lambda_{1}(k)}\left\{\Pi(k-1)-\frac{\lambda_{2}(k) \Pi(k-1) \xi(k-d) \xi^{T}(k-d) \Pi(k-1)}{\lambda_{1}(k)+\lambda_{2}(k) \xi_{T}(k-d) \Pi(k-1) \xi(k-d)}\right\} \tag{10}
\end{gather*}
$$

, where $0<\lambda_{1}(k) \leq 1,0 \leq \lambda_{2}(k) \leq \lambda, \Pi(0)=\Pi(0)^{T}>0$. By removing $\hat{\phi}(k)(\hat{\theta}(k))$ from $\epsilon_{1}(k)$,

$$
\begin{equation*}
\epsilon_{1}(k)=\frac{-D\left(q^{-1}\right) y(k)+\hat{\theta}^{T}(k-1) \xi(k-d)}{1+\xi^{T}(k-d) \Pi(k-1) \xi(k-d)} \tag{11}
\end{equation*}
$$

$\epsilon_{1}(k)$ will goes to zero for $\left.k \rightarrow \infty\right)$ by (9)-(11).

## 7 STR: Self-tuning regulator

### 7.1 Formulation

In this section, we introduce STR that considers stochastic noize added to plants. At first, we formulate a plant by (12).

$$
\begin{align*}
\text { Plant : } A\left(q^{-1}\right) y(k)=q^{-d} B\left(q^{-1}\right) u(k)+C\left(q^{-1}\right) w(k)  \tag{12}\\
\left\{\begin{array}{l}
A\left(q^{-1}\right)=1+a_{1} q^{-1}+\cdots+a_{n} q^{-n} \\
B\left(q^{-1}\right)=b_{0}+b_{1} q^{-1}+\cdots+b_{m} q^{-m} \\
C\left(q^{-1}\right)=1+c_{1} q^{-1}+\cdots+c_{n} q^{-n}
\end{array}\right.
\end{align*}
$$

where $w(k)$ denotes white noize (average $=0$, distribution $=\sigma^{2}$ ). Known parameters are $m, n, d$, and unknown parameters are $a_{i}, b_{j}, c_{k}$. We assume that $B\left(q^{-1}\right)$ and $C\left(q^{-1}\right)$ are stability polynominals.

In this section, our goal is minimizing $J=E\left[\left(y_{m}(k)-y(k)\right)^{2}\right]$ (minimizing distribution).

### 7.2 Diophantine equation

Next, we consider Diophantine equation and non-minimal realization. Diophantine equation is represented by (13).

$$
\begin{align*}
C\left(q^{-1}\right) & =A\left(q^{-1}\right) R\left(q^{-1}\right)+q^{-d} H\left(q^{-1}\right)  \tag{13}\\
R\left(q^{-1}\right) & =1+r_{1} q^{-1}+\cdots r_{d-1} q^{-(d-1)} \\
H\left(q^{-1}\right) & =h_{0}+h_{1} q^{-1}+\cdots h_{n-1} q^{-(n-1)}
\end{align*}
$$

By mutiplying (13) by $y(k)$,

$$
\begin{align*}
C\left(q^{-1}\right) y(k) & =A\left(q^{-1}\right) R\left(q^{-1}\right) y(k)+q^{-d} H\left(q^{-1}\right) y(k) \\
& =B\left(q^{-1}\right) R\left(q^{-1}\right) u(k-d)+H\left(q^{-1}\right) y(k-d)+C\left(q^{-1}\right) R\left(q^{-1}\right) w 1 \tag{1/1}
\end{align*}
$$

Here, we define system error $e_{1}(k)=y_{m}(k)-y(k)$,

$$
\begin{aligned}
C\left(q^{-1}\right) e_{1}(k) & =C\left(q^{-1}\right) y_{m}(k)-C\left(q^{-1}\right) y(k) \\
& =C\left(q^{-1}\right) y_{m}(k)-B\left(q^{-1}\right) R\left(q^{-1}\right) u(k-d)-H\left(q^{-1}\right) y(k-d)-C\left(q^{-1}\right) R\left(q^{-1}\right) u(\mathbf{k})
\end{aligned}
$$

. For $(15) \rightarrow 0$,

$$
\begin{equation*}
u(k)=\frac{1}{b_{0}}\left\{C\left(q^{-1}\right) y_{m}(k+d)-H\left(q^{-1}\right) y(k)-B_{R}\left(q^{-1}\right) u(k)\right\} \tag{16}
\end{equation*}
$$

where $B_{R}\left(q^{-1}\right)=B\left(q^{-1}\right) R\left(q^{-1}\right)-b_{0}$. Then, we obtain

$$
e_{1}(k)=-R\left(q^{-1}\right) w(k)
$$

### 7.3 Control

Same as the case of MRACS, we define $\theta$ and $\xi$ as follows.

$$
\begin{aligned}
\theta^{T}= & {\left[b_{0}, b_{0} r_{1}+b_{1}, b_{0} r_{2}+b_{1} r_{1}+b_{2}, \cdots, b_{m} r_{d-1}, h_{0}, h_{1}, \cdots, h_{n-1}, c_{1}, c_{2}, \cdots, c_{n}\right] } \\
\xi^{T}= & {[u(k), u(k-1), \cdots, u(k-(m+d-1)), y(k), y(k-1), \cdots, y(k-(n-1)),} \\
& \left.-y_{m}(k+d-1), \cdots,-y_{m}(k+d-n)\right]
\end{aligned}
$$

Then,

$$
\begin{align*}
u(k) & =\frac{1}{b_{0}}\left\{y_{m}(k+d)-\bar{\theta}^{T} \bar{\xi}(k)\right\}  \tag{17}\\
y_{m}(k+d) & =\bar{\theta}^{T} \bar{\xi}(k) \tag{18}
\end{align*}
$$

where, $\theta^{T}=\left[b_{0}, \bar{\theta}^{T}\right], \xi^{T}(k)=\left[u(k), \bar{\xi}^{T}(k)\right]$.
By $\phi^{T}(k)=\hat{\theta}^{T}-\theta^{T}$,

$$
\epsilon_{1}(k)=\phi^{T}(k) \xi(k-d)=y_{m}(k)-y(k)
$$

Then, we can apply algorithms of identifiers.

