2 Time Series model

2.1 Expression

We consider a system represented by a state space model as follows.

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \quad, \quad x(0)=x_{0} \tag{1}\\
y(t)=C x(t)
\end{array}\right.
$$

We can obtain the solution of (1) as (2), and the transfer function of the system is represented by (3), where s and p means Laplace operator and differential operator $\left(=\frac{d}{d t}\right)$ respectively.

$$
\begin{gather*}
y(t)=C e^{A t} x_{0}+C \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau \tag{2}\\
Y(s)=G(s) U(s) \quad \text { or } \quad y(t)=G(p) u(t) \tag{3}
\end{gather*}
$$

Here, we assume system noise $v(t)$ and measurement noise $w(t)$.

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t)+D v(t) \tag{4}\\
y(t)=C x(t)+w(t)
\end{array}\right.
$$

We assume $v(t)$ and $w(t)$ are independent white noises that have following properties.

$$
\begin{gathered}
E[v(t)]=E[w(t)]=0 \\
E\left[v(t) w^{T}(t)\right]=0 \\
E\left[v(t) v^{T}(t+\tau)\right]=Q \delta(\tau) \\
E\left[w(t) w^{T}(t+\tau)\right]=R \delta(\tau)
\end{gathered}
$$

$E[\cdot]$ represents an expectation, and $\delta(t)$ means Dirac's delta function. Q and R denote simmetory positive definite matrix and positive semidefinite matrix, respectively.

2.2 Forward and Backward Shift Operators

Here, we consider a discretized system whose sampling time is T.

$$
\left\{\begin{array}{cllll}
x(k+1) & =F(T) & x(k) & +H(T) & u(k) \tag{5}\\
y(k) & =C(T) & x(k) & +D(T) & u(k)
\end{array}\right.
$$

, where

$$
F(T)=e^{A T}, H(T)=\left(\int_{0}^{T} e^{A \lambda} d \lambda\right) B
$$

If we assume $T \ll 1$,

$$
F(T) \simeq I+A T, H(T) \simeq B T
$$

Here, we introduce forwardand backward operators. Forward and backward operators q and q^{-1} are defined as follows.

$$
\begin{align*}
q y(k) & =y(k+1) \tag{6}\\
q^{-1} y(k) & = \begin{cases}y(k-1) & (k \geq 1) \\
0 & (k=0)\end{cases} \tag{7}\\
q^{i} y(k) & =y(k+i) \tag{8}\\
q^{-1} y(k) & = \begin{cases}y(k-i) & (k \geq i) \\
0 & (0 \leq k<i)\end{cases} \tag{9}
\end{align*}
$$

Then we consider stochastic noise-added model represented by following euqation.

$$
\begin{align*}
y(k) & =\frac{B\left(q^{-1}\right)}{A\left(q^{-1}\right)} u(k)+n(k) \tag{10}\\
A\left(q^{-1}\right) & =1+a_{1} q^{-1}+\cdots+a_{n} q^{-n} \\
B\left(q^{-1}\right) & =b_{0}+b_{1} q^{-1}+\cdots+b_{m} q^{-m} \\
& n(k)=H\left(q^{-1}\right) m(k) \tag{11}
\end{align*}
$$

, where $m(k)$ represents white noise. Then $H\left(q^{-1}\right)$ is called as shaping filter.

$$
\begin{align*}
H\left(q^{-1}\right) & =\frac{D\left(q^{-1}\right)}{C\left(q^{-1}\right)} \tag{12}\\
C\left(q^{-1}\right) & =1+c_{1} q^{-1}+\cdots+c_{p} q^{-p} \\
D\left(q^{-1}\right) & =1+d_{1} q^{-1}+\cdots+d_{r} q^{-r}
\end{align*}
$$

Therefore, output $y(k)$ is represented by following equation. This system is called "time series model".

$$
\begin{equation*}
y(k)=\frac{B\left(q^{-1}\right)}{A\left(q^{-1}\right)} u(k)+\frac{D\left(q^{-1}\right)}{C\left(q^{-1}\right)} m(k) \tag{13}
\end{equation*}
$$

2.3 ARMA model

When $D\left(q^{-1}\right)=1, n(k)$ becomes

$$
\begin{equation*}
n(k)=-c_{1} n(k-1)-c_{2} n(k-2) \cdots-c_{p} n(k-p)+m(k) . \tag{14}
\end{equation*}
$$

It is called AR model (Auto-Regressive model).
When $C\left(q^{1}\right)=1, n(k)$ becomes

$$
\begin{equation*}
n(k)=m(k)+d_{1} m(k-1)+\cdots+d_{r} m(k-r) \tag{15}
\end{equation*}
$$

It is called MA model (Moving Average model).
Generally, $n(k)$ is
$n(k)=-c_{1} n(k-1)-c_{2} n(k-2) \cdots-c_{p} n(k-p)+m(k)+d_{1} m(k-1)+\cdots+d_{r} m(k-r)$.
It is called ARMA model (Auto-Regressive Moving Average Model).

2.4 Linear Diophantine equation

We consider following system, where $A(p)$ and $B(p)$ are coprime polynomials.

$$
\begin{align*}
y(t) & =\frac{B(p)}{A(p)} u(t) \tag{17}\\
A(p) & =p^{n}+a_{n-1} p^{n-1}+\cdots+a_{1} p+a_{0} \\
B(p) & =b_{m} p^{m}+\cdots+b_{1} p+b_{0}
\end{align*}
$$

When $Q(p)$ (order n) and $D(p)$ (order $n-m$) are monic stability polynomial, we can find a uniq pair of $R(p)$ and $H(p)$ that satisfy (18).

$$
\begin{equation*}
R(p) A(p)+H(p) B(p)=Q(p)\left(b_{m} A(p)-D(p) B(p)\right) \tag{18}
\end{equation*}
$$

, where

$$
\begin{aligned}
& R(p)=r_{n-1} p^{n-1}+\cdots+r_{1} p+r_{0} \\
& H(p)=h_{n-1} p^{n-1}+\cdots+h_{1} p+h_{0}
\end{aligned}
$$

Equation (18) is called Diophantine equation.
By multiplying $B^{-1}(p) y(t)$ to (18) and introducing (17), we obtain (19).

$$
\begin{equation*}
D(p) y(t)=b_{m} u(t)-\frac{R(p)}{Q(p)} u(t)-\frac{H(p)}{Q(p)} y(t) \tag{19}
\end{equation*}
$$

This equation gives non-minimal realization of the system (17). Figure 1 illustrates the block diagram of a non-minimal realization.

Arrange equation (18) as

$$
\begin{equation*}
\left(b_{m} Q(p)-R(p)\right) A(p)=(H(p)+Q(p) D(p)) B(p) \tag{20}
\end{equation*}
$$

then we set $E(p)$ and $F(p)$ as

$$
\begin{align*}
E(p) B(p) & =b_{m} Q(p)-R(p) \tag{21}\\
F(p) & =-H(p) \tag{22}
\end{align*}
$$

equation (20 becomes

$$
\begin{equation*}
E(p) A(p) B(p)=(Q(p) D(p)-F(p)) B(p) \tag{23}
\end{equation*}
$$

Therefore, we obtain Egardt's identity (24).

$$
\begin{equation*}
Q(p) D(p)=A(p) E(p)+F(p) \tag{24}
\end{equation*}
$$

Figure 1: Block diagram of a non-minimal realization

