
2 Time Series model

2.1 Expression

We consider a system represented by a state space model as follows.{
ẋ(t) = Ax(t) + Bu(t) , x(0) = x0

y(t) = Cx(t) (1)

We can obtain the solution of (1) as (2), and the transfer function of the sys-
tem is represented by (3), where s and p means Laplace operator and differential
operator (= d

dt ) respectively.

y(t) = CeAtx0 + C

∫ t

0

eA(t−τ)Bu(τ)dτ (2)

Y (s) = G(s)U(s) or y(t) = G(p)u(t) (3)

Here, we assume system noise v(t) and measurement noise w(t).{
ẋ(t) = Ax(t) + Bu(t) + Dv(t)
y(t) = Cx(t) + w(t) (4)

We assume v(t) and w(t) are independent white noises that have following
properties.

E[v(t)] = E[w(t)] = 0

E[v(t)wT (t)] = 0

E[v(t)vT (t + τ)] = Qδ(τ)

E[w(t)wT (t + τ)] = Rδ(τ)

E[·] represents an expectation, and δ(t) means Dirac’s delta function. Q and
R denote simmetory positive definite matrix and positive semidefinite matrix,
respectively.

2.2 Forward and Backward Shift Operators

Here, we consider a discretized system whose sampling time is T .{
x(k + 1) = F (T ) x(k) + H(T ) u(k)

y(k) = C(T ) x(k) + D(T ) u(k) (5)

, where

F (T ) = eAT , H(T ) =

(∫ T

0

eAλdλ

)
B.

If we assume T << 1,

F (T ) � I + AT, H(T ) � BT.
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Here, we introduce forwardand backward operators. Forward and backward
operators q and q−1 are defined as follows.

qy(k) = y(k + 1) (6)

q−1y(k) =
{

y(k − 1) (k ≥ 1)
0 (k = 0) (7)

qiy(k) = y(k + i) (8)

q−1y(k) =
{

y(k − i) (k ≥ i)
0 (0 ≤ k < i) (9)

Then we consider stochastic noise-added model represented by following eu-
qation.

y(k) =
B(q−1)
A(q−1)

u(k) + n(k) (10)

A(q−1) = 1 + a1q
−1 + · · · + anq−n

B(q−1) = b0 + b1q
−1 + · · · + bmq−m

n(k) = H(q−1)m(k) (11)

, where m(k) represents white noise. Then H(q−1) is called as shaping filter.

H(q−1) =
D(q−1)
C(q−1)

(12)

C(q−1) = 1 + c1q
−1 + · · · + cpq

−p

D(q−1) = 1 + d1q
−1 + · · · + drq

−r

Therefore, output y(k) is represented by following equation. This system is
called ”time series model”.

y(k) =
B(q−1)
A(q−1)

u(k) +
D(q−1)
C(q−1)

m(k) (13)

2.3 ARMA model

When D(q−1) = 1, n(k) becomes

n(k) = −c1n(k − 1) − c2n(k − 2) · · · − cpn(k − p) + m(k). (14)

It is called AR model (Auto-Regressive model).
When C(q

1
) = 1, n(k) becomes

n(k) = m(k) + d1m(k − 1) + · · · + drm(k − r). (15)
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It is called MA model (Moving Average model).
Generally, n(k) is

n(k) = −c1n(k−1)−c2n(k−2) · · ·−cpn(k−p)+m(k)+d1m(k−1)+· · ·+drm(k−r).
(16)

It is called ARMA model (Auto-Regressive Moving Average Model).

2.4 Linear Diophantine equation

We consider following system, where A(p) and B(p) are coprime polynomials.

y(t) =
B(p)
A(p)

u(t) (17)

A(p) = pn + an−1p
n−1 + · · · + a1p + a0

B(p) = bmpm + · · · + b1p + b0

When Q(p) (order n) and D(p) (order n−m) are monic stability polynomial,
we can find a uniq pair of R(p) and H(p) that satisfy (18).

R(p)A(p) + H(p)B(p) = Q(p)(bmA(p) − D(p)B(p)) (18)

, where

R(p) = rn−1p
n−1 + · · · + r1p + r0

H(p) = hn−1p
n−1 + · · · + h1p + h0.

Equation (18) is called Diophantine equation.
By multiplying B−1(p)y(t) to (18) and introducing (17), we obtain (19).

D(p)y(t) = bmu(t) − R(p)
Q(p)

u(t) − H(p)
Q(p)

y(t) (19)

This equation gives non-minimal realization of the system (17). Figure 1 illus-
trates the block diagram of a non-minimal realization.

Arrange equation (18) as

(bmQ(p) − R(p)) A(p) = (H(p) + Q(p)D(p))B(p), (20)

then we set E(p) and F (p) as

E(p)B(p) = bmQ(p) − R(p) (21)
F (p) = −H(p), (22)

equation (20 becomes

E(p)A(p)B(p) = (Q(p)D(p) − F (p))B(p). (23)

Therefore, we obtain Egardt’s identity (24).

Q(p)D(p) = A(p)E(p) + F (p) (24)
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Figure 1: Block diagram of a non-minimal realization
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