適応システム論   Adaptive Systems Theory

文字サイズ 

担当教員
山村 雅幸  小野 功 
使用教室
月5-6(J221)  
単位数
講義:2  演習:0  実験:0
講義コード
94029
シラバス更新日
2013年3月21日
講義資料更新日
2013年3月21日
学期
前期

講義概要

知能システム科学の各分野に関係する適応システムの方法論的基礎の修得を目標とする。講義では,最適化,意思決定とゲーム,進化,学習などを取り上げ,関連性を考慮した体系的な解説を行う。また,演習による理解と習熟を図る。

講義の目的

生物システム、社会システム、経済システムなどの複雑なシステムに共通する性質は、システムの構成員であるプレーヤーが与えられた環境に対して適応的に振る舞うことにあり、その意味でこれらのシステムは適応システムの典型例でもある。本講義では、適応システムを理解する上での基礎となる基本的概念、理論、方法を修得することを目的としている。

講義計画

1. 意思決定とゲーム(第1~4週): 意思決定とは。 意思決定(効用、意思決定基準、不確実性下での決定)。 ゲーム理論(戦略形・展開形ゲーム、繰り返しゲーム)。 進化ゲーム。
2. 最適化(第5~9週): 最適化とは。 数理計画(線形計画、非線形計画、凸計画、最適化手法)。 組み合わせ最適化(問題クラス、厳密解法、近似解法)。
3. 学習(第10~13週): 学習とは。 古典的学習理論(KL展開、判別分析、ベイズ決定則)。 ニューラルネット(多層パーセプトロン、リカレントネットワーク、自己組織化マップ)。 強化学習(TD法、Q-Learning、Actor-Critic、Profit Sharing)。

教科書・参考書等

担当教官が独自の資料を用意する。

関連科目・履修の条件等

履修に当たっては、線形代数の基礎を復習しておくことが望まれる。

成績評価

学期末の筆頭試験によって評価する。

担当教員の一言

意思決定・最適化・学習は、複雑適応系を理解する上で重要なキーワードである。

このページのトップへ