### 弾性体力学特論   Advanced Course on Elasticity Theory

WIJEYEWICKREMA ANIL CHRISTOPHER

61048
シラバス更新日
2008年10月1日

2008年10月1日

### 講義概要

(A) Finite Elastic Deformations

１．Cartesian tensors and tensor algebra, ２．Kinematics, ３．Deformation and strain rates, ４．Stress tensors and conjugate stress analysis, ５．Constitutive laws

(B) Anisotropic Elasticity

(1). Linear anisotropic elasticity, (2). Lekhnitskii formalism, (3). Stroh formalism

### 講義の目的

Non-linear elastic behavior is studied in detail. Anisotropic elasticity will also be introduced.

### 講義計画

1.
Finite Elastic Deformations -- Mathematical preliminaries (Cartesian tensors)

2.
Finite Elastic Deformations -- Mathematical preliminaries (Tensor algebra)

3.
Finite Elastic Deformations -- Kinematics (Configurations and motions)

4.
Finite Elastic Deformations -- Kinematics (Deformation gradient and deformation of volume and surface elements)

5.
Finite Elastic Deformations -- Kinematics (Strain, stretch, extension and shear)

6.
Finite Elastic Deformations -- Kinematics (Geometrical interpretation of the deformation)

7.
Analysis of motion -- Deformation and strain rates

8.
Balance laws

9.
Stress tensors -- Cauchy stress tensor

10.
Stress tensors -- Nominal stress tensor

11.
Conjugate stress analysis

12.
Constitutive laws

13.
Anisotropic Elasticity -- Linear anisotropic elasticity

14.
Anisotropic Elasticity -- Lekhnitskii formalism

15.
Anisotropic Elasticity -- Stroh formalism

### 教科書・参考書等

Holzapfel, G. A., 2001, “Nonlinear solid mechanics”, John Wiley, Chichester.

Ogden, R. W., 1984, “Non-linear elastic deformations”, Ellis Horwood, Chichester, also published by Dover publications, New York in 1997.

Ting, T. C. T., 1996, “Anisotropic elasticity”, Oxford University Press, New York.

### 関連科目・履修の条件等

Students should have previously followed a course on Fundamentals of Elasticity or Introduction to Solid Mechanics.

### 成績評価

Homework - 20%, Quizzes - 20% and Final exam - 60%