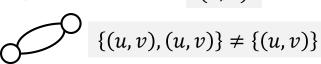


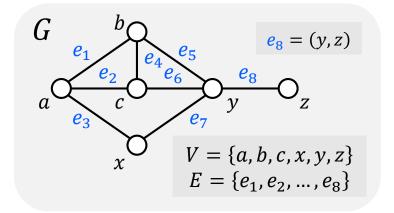
離散構造とアルゴリズム (1-1) グラフ

高橋篤司 東京工業大学 工学院 情報通信系

1-1 (1) グラフ

- ■離散構造を表現する手段
 - $-\mathcal{O}^{\tilde{}} \supset \mathcal{O}(graph) : G = (V, E)$
 - V:点集合 (vertex set)
 - 基本的には有限集合
 - E: 辺集合 (edge set) ($E \subseteq V \times V$)
 - 有向辺: $(u,v) \neq (v,u) \Rightarrow$ 有向グラフ
 - 無向辺: $(u,v) = (v,u) \Rightarrow$ 無向グラフ
 - ▶ (自己)ループ:反射律に対応
 - ▶ 並列辺:重複集合





n = |V| : 点数 m = |E| : 辺数

V(G): グラフGの点集合

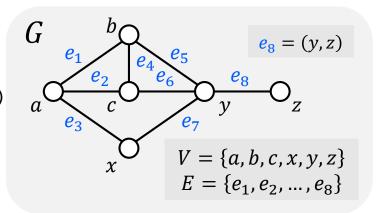
E(G): グラフGの辺集合

✓ 単純グラフ:ループ,並列辺を持たないグラフ

グラフの表現

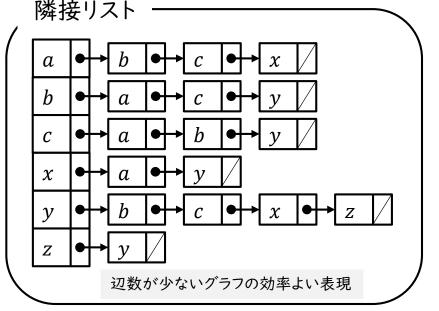
- > 次数 $\deg_G(v)$: 点vに接続する辺の数
- 隣接行列 A(G) [$A \times A$] ($A \times A$]
 - 点と点の隣接関係 (無向グラフ ⇒ 対称行列)

行の「1」の和:次数 列の「1」の和:次数



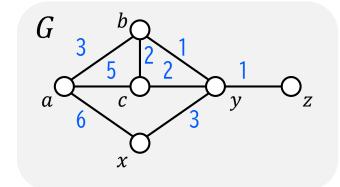
- 接続行列 B(G) [点×辺] $([n \times m])$
 - 点と辺の接続関係

行の「1」の和:次数



ネットワーク N = (G, w)

- ■辺に重みがついたグラフ
 - 重み関数 : $w: E(G) \rightarrow \mathbb{R}$



- ▶点に重みがついたグラフを考えることもある
 - 点重み ⇔ 辺重みの変換は可能

点と辺

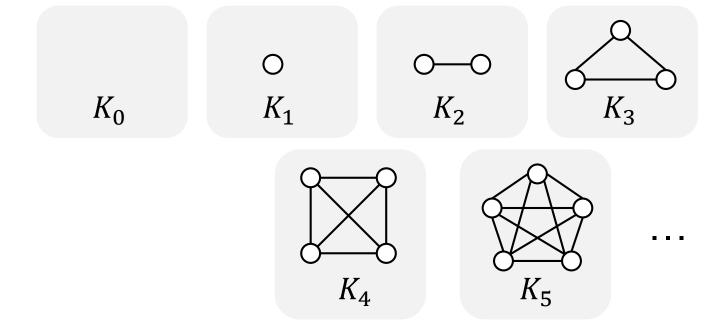
- 点uと点vをつなぐ辺e
 - -e = (u, v)
 - 点*u*,*v*は辺*e*の端点(end vertices)

$$\underbrace{v} = (u, v) \\
v$$

- > 点と辺は接続(incident)
- > 点と点は隣接(adjacent)

完全グラフ (Complete Graph)

- 完全グラフ (Complete Graph)
 - すべての異なる2点が隣接している(単純)グラフ
 - Gは完全グラフ ⇔ $\forall u \in V(G) \forall v \in V(G) \setminus \{u\} (u,v) \in E(G) \land \forall v \in V(G) (v,v) \notin E(G)$
 - Gは完全グラフでない \Leftrightarrow $\exists u \in V(G) \exists v \in V(G) \setminus \{u\} (u,v) \notin E(G) \lor \exists v \in V(G) (v,v) \in E(G)$
 - K_n $(n \in \mathbb{N})$: n点からなる完全グラフ



■命題

- 真であるか偽であるか判断できる文
- 命題論理式
 - 命題変数
 - 基本的な命題を表現
 - 命題変数を論理結合子で結合
 - 真理値(ブール(Boolean)集合)
 - $\{0,1\} = \{F,T\} = \{\text{False, True}\} = \{\text{偽, 真}\}$

■ 論理結合子

_	論理積Λ	(かつ)
---	------	------

- 論理和V (または)

- 否定¬	(でない)
-------	-------

- 含意⇒ (ならば)

- 同値⇔ (かつ,そのときに限り)

$\neg \alpha$	α	β	αΛβ	$\alpha \vee \beta$	$\alpha \Rightarrow \beta$	$\alpha \Leftrightarrow \beta$
1	0	0	0	0	1	1
0	0	1	0	1	1	0
	1	0	0	1	0	0
	1	1	1	1	1	1

■命題論理の性質

- 必要十分条件
 - $\triangleright (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) = (\alpha \Leftrightarrow \beta)$
- 逆は真ならず
 - $\triangleright (\alpha \Rightarrow \beta) \neq (\beta \Rightarrow \alpha)$
 - 金持ちは早起きだ
 - 早起きは金持ちだ
- 対偶
 - $\triangleright (\alpha \Rightarrow \beta) = (\neg \beta \Rightarrow \neg \alpha)$
 - 早起きでなければ金持ちでない
- ド・モルガン
 - $\rightarrow \neg(\alpha \land \beta) = \neg\alpha \lor \neg\beta$
 - $\rightarrow \neg(\alpha \lor \beta) = \neg\alpha \land \neg\beta$

α	β	$\alpha \Rightarrow \beta$	$\beta \Rightarrow \alpha$	$\alpha \Leftrightarrow \beta$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	1	1	1

α	β	$\alpha \Rightarrow \beta$	$\neg \beta \Rightarrow \neg \alpha$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

α	β	$\neg(\alpha \land \beta)$	$\neg(\alpha \lor \beta)$
0	0	1	1
0	1	1	0
1	0	1	0
1	1	0	0

- 含意⇒(ならば)
 - $-\alpha \Rightarrow \beta$
 - 前件αが偽ならば,命題は真
 - 結合則は成り立たない

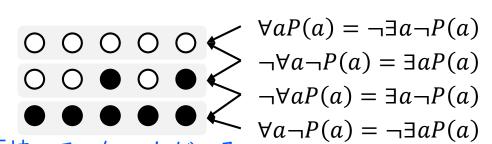
 - $\alpha \Rightarrow \beta \Rightarrow \gamma$ とは書けない

- - 日常会話では使われるかもしれない
 - 論理的には意味は不明確
- α, γが偽であるとき
 - 「 α ならば β であるならば、 γ である」は偽
 - 「 α ならば、 β であるならば $\dot{\gamma}$ である」は真

「夏ならば晴れであるならば暑い」は「夏で晴れならば暑い」の意図?

α β γ	$(\alpha \Rightarrow \beta) \Rightarrow \gamma$	$\alpha \Rightarrow (\beta \Rightarrow \gamma)$	$(\alpha \land \beta) \Rightarrow \gamma$	$\alpha \Rightarrow \beta$	$\beta \Rightarrow \gamma$
0 0 0	0	1	1	1	1
0 0 1	1	1	1	1	1
0 1 0	0	1	1	1	0
0 1 1	1	1	1	1	1
1 0 0	1	1	1	0	1
1 0 1	1	1	1	0	1
1 1 0	0	0	0	1	0
1 1 1	1	1	1	1	1

- ■述語論理
 - 個体変数,述語表現,限量化
 - 述語表現P(a)
 - 限量子
 - 存在∃a P(a) :あるaに対してP(a)が成立する (exists)
 - 全称 $\forall a P(a)$:すべてのaに対してP(a)が成立する(for all)
 - ▶ 日常会話
 - 「みな持っている」は「持っている人がいる」を意図する?
- ■述語論理の性質
- $\triangleright \neg \forall a P(a) = \exists a \neg P(a)$

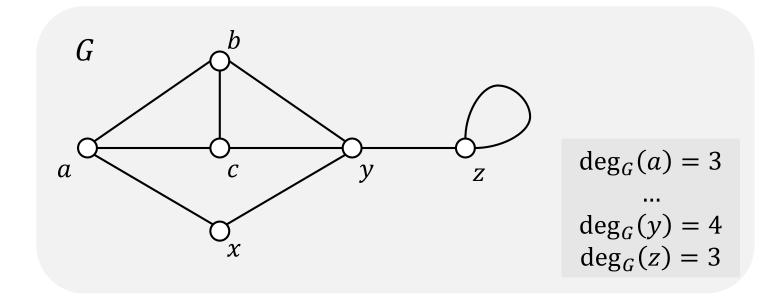


- 「皆持っている,ことはない」=「持っていない人がいる」
- $\neg \forall a \neg P(a) = \neg \exists a P(a)$
 - 「誰も持っていない」=「持っている人がいる,ことはない」

1-1 (2) 基本的な定義

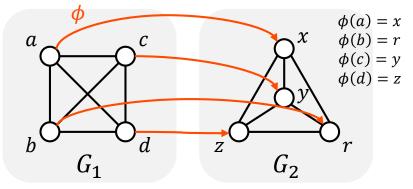
基本的な定義 (1) 次数(degree)

- 次数 $\deg_G(v)$: 点vに接続する辺の数
 - ループは2回カウント

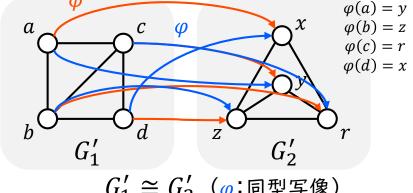


基本的な定義(2)同型(isomorphic)

- 同型 $G_1 \cong G_2$
 - 同型写像 $\phi:V(G_1) \rightarrow V(G_2)$: が存在
 - 点間の隣接関係を保存する全単射



 $G_1 \cong G_2$ (ϕ :同型写像)



 $G_1' \cong G_2'$ (φ :同型写像)

- 同型であるための必要条件
 - 点数、辺数が等しい
 - 次数系列が等しい
- 同型であるための必要十分条件?
- G'₁の次数系列: (3,3,2,2) G'2の次数系列: (3,3,2,2)

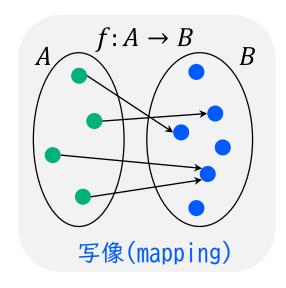
写像(関数)(確認)

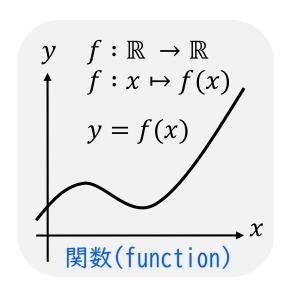
- ■集合A(定義域)から集合B(値域)への写像f
 - $\forall a \in A$ がそれぞれ、ある要素 $b \in B$ に対応

rackream f: A
ightarrow B 定義域と値域を表す

 $> f: a \mapsto b$ 要素の対応を表す

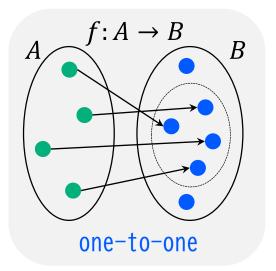
> y = f(x)

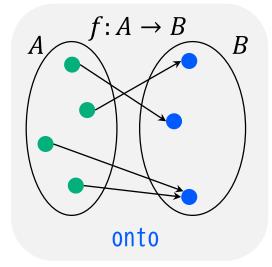




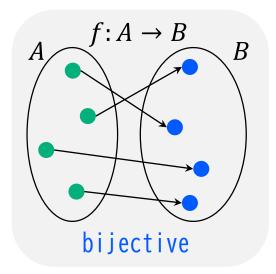
写像の特徴づけ(確認)

- 写像 *f* : *A* → *B*
 - 単射(injection), 一対一(one-to-one)
 - *A*の異なる要素は異なる像を持つ
 - \blacksquare $\forall a, b \in A, a \neq b \Rightarrow f(a) \neq f(b)$
 - 全射(surjection), 上への対応(onto)
 - Bのすべての要素はAのある要素の像
 - $\forall b \in B, \exists a \in A, b = f(a)$
 - 全単射(bijection)
 - 単射かつ全射



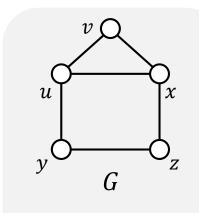


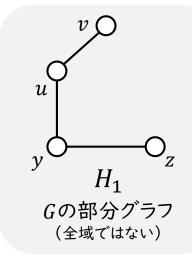


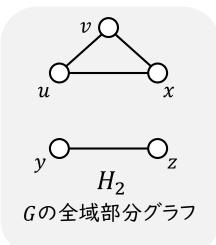


基本的な定義 (3) 部分グラフ(subgraph)

- グラフGの部分グラフH ($\subseteq G$)
 - $O \supset TH = (V', E'), \quad O \supset TG = (V, E), \quad V' \subseteq V, \quad E' \subseteq E$
 - グラフの点/辺集合の部分集合を点/辺集合とするグラフ
- ightrightright
 ightarrow任意のV'' ⊆ V, E'' ⊆ Eに対して
 - (V'', E'')はGの部分グラフとは限らない ::グラフ $G = (V, E) \iff E \subseteq V \times V$
- ✓ グラフGの全域部分グラフH
 - \blacksquare $H \subseteq G$, V(H) = V(G)
 - 点集合が一致する部分グラフ

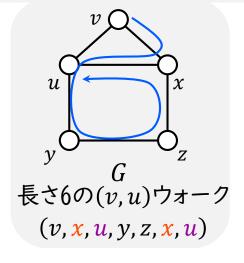


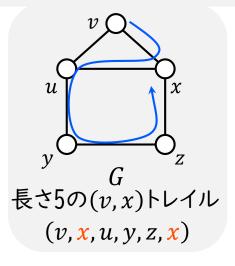


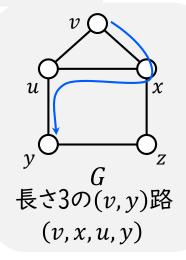


基本的な定義 (4) 路(パス) (path)

- ウォーク (walk)
 - 点辺系列 $(v_0, e_1, v_1, e_2, v_2, ..., e_n, v_n)$: 長さn (辺の数)
 - 辺をたどって動き回る : $e_i = (v_{i-1}, v_i)$ $(1 \le i \le n)$
 - 部分グラフ(もしくは性質を満たすグラフ)
- ✓ 単純グラフ
 - \Rightarrow 点系列 $(v_0, v_1, v_2, ..., v_n)$ で指定可 : $(v_{i-1}, v_i) \in E(G)$ $(1 \le i \le n)$
- トレイル (trail)
 - 同じ辺を通らないウォーク
- 路 (パス) (path)
 - 同じ点を通らないウォーク



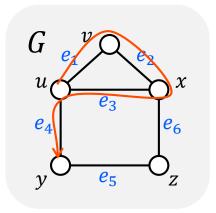




トレイル (Trail)

■ 同じ辺を通らないウォーク

- $-P = (v_0, e_1, v_1, e_2, ..., v_{k-1}, e_k, v_k)$
 - $t \in c_i \neq e_i \ (i \neq j), \ e_i = (v_{i-1}, v_i) \ (1 \leq i \leq k)$
- 長さk(辺数)
- $\blacksquare (v_0, v_k) \vdash \lor \land \lor \lor$
 - $-v_0$ から v_k へのトレイル



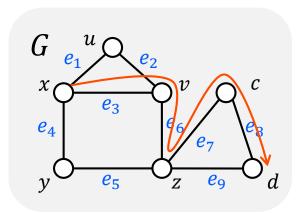
$$P = (u, e_1, v, e_2, x, e_3, u, e_4, y)$$

$$P = (u, v, x, u, y)$$
 is a (u, y) -trail of length 4 in G

路(パス) (Path)

■ 同じ点を通らないウォーク

- $-P = (v_0, e_1, v_1, e_2, ..., v_{k-1}, e_k, v_k)$
 - $\bullet \quad \text{triu}_i \neq v_i \ (i \neq j), \ e_i = (v_{i-1}, v_i) \ (1 \leq i \leq k)$
- 長さk (辺数)
- $\blacksquare (v_0, v_k)$ -路
 - $-v_0$ から v_k への路



$$P = (x, e_3, v, e_6, z, e_7, c, e_8, d)$$

$$P = (x, v, z, c, d)$$
is a (x, d) -path of length 4 in G

路(パス)の性質(a)

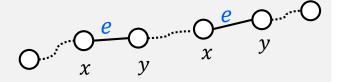
■ 定理 (a)

- 路はトレイル

□証明:

- トレイルでない路が存在すると仮定
- 同じ辺を2回以上含む ⇒ 同じ点を2回以上含む ⇒ 仮定に反する ■
- ▶ 同じ辺を通る ⇒ 同じ端点を通る
- ▶トレイルは路とは限らない
 - ウォーク (walk)
 - 点辺系列 $(v_0, e_1, v_1, e_2, v_2, ..., e_n, v_n)$: 長さn (辺の数)
 - 辺をたどって動き回る : $e_i = (v_{i-1}, v_i)$ $(1 \le i \le n)$
 - 部分グラフ(もしくは性質を満たすグラフ)
 - ✓ 単純グラフ
 - \Rightarrow 点系列 $(v_0, v_1, v_2, ..., v_n)$ で指定可 : $(v_{i-1}, v_i) \in E(G)$ $(1 \le i \le n)$
 - トレイル (trail)
 - 同じ辺を通らないウォーク
 - 路 (パス) (path)
 - 同じ点を通らないウォーク

ある路がトレイルでないならば…

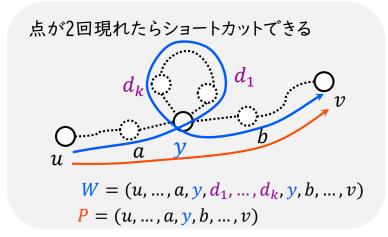


路(パス)の性質(b)

- 定理 (b) (Theorem 1.1)
 - 長さno(u, v)ウォークが存在 \Rightarrow 長さn以下o(u, v)路が存在

□証明:

- 同じ点間の区間を取り除く
- 繰り返す
 - ⇒ 同じ点が現れないウォーク=路 ■
- ▶ ウォークの中に路あり
 - ウォーク (walk)
 - 点辺系列 $(v_0, e_1, v_1, e_2, v_2, ..., e_n, v_n)$: 長さn (辺の数)
 - 辺をたどって動き回る : $e_i = (v_{i-1}, v_i)$ $(1 \le i \le n)$
 - 部分グラフ(もしくは性質を満たすグラフ)
 - ✓ 単純グラフ
 - \Rightarrow 点系列 $(v_0, v_1, v_2, ..., v_n)$ で指定可 : $(v_{i-1}, v_i) \in E(G)$ $(1 \le i \le n)$
 - トレイル (trail)
 - 同じ辺を通らないウォーク
 - 路 (パス) (path)
 - 同じ点を通らないウォーク



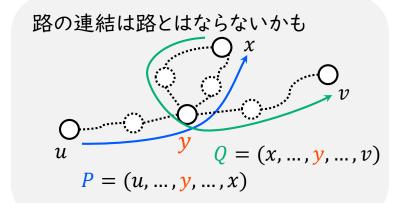
路(パス)の性質(c)

■ 定理 (c)

- (u,x)路Pと(x,v)路Qが存在 $\Rightarrow (u,v)$ 路は存在

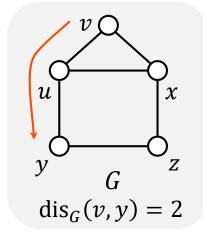
□証明:

- *P*と*Q*の連結は(*u*, *v*)ウォーク
- -(u,v)ウォークが存在 ⇒ (u,v)路は存在 ■
- ▶ 路の連結は路になるとは限らない
 - ウォーク (walk)
 - 点辺系列 $(v_0, e_1, v_1, e_2, v_2, ..., e_n, v_n)$: 長さn (辺の数)
 - 辺をたどって動き回る : $e_i = (v_{i-1}, v_i)$ $(1 \le i \le n)$
 - 部分グラフ(もしくは性質を満たすグラフ)
 - ✓ 単純グラフ
 - ⇒ 点系列 $(v_0, v_1, v_2, ..., v_n)$ で指定可 : $(v_{i-1}, v_i) \in E(G)$ $(1 \le i \le n)$
 - トレイル (trail)
 - 同じ辺を通らないウォーク
 - 路 (パス) (path)
 - 同じ点を通らないウォーク



基本的な定義(5)最短路と距離

- 2点*uv*間の距離
 - 最短路の長さ(重み)
 - *uv*間に路がない ⇔ 距離∞
 - ログラフG
 - 距離 $\operatorname{dis}_{G}(u,v)$
 - 最短(*u*, *v*)路*P*の長さ
 - 長さ: 辺数 |P|
 - ✓ 距離公理を満たす



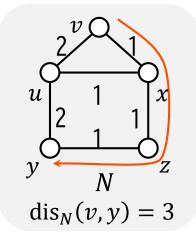
距離公理

非負 $\vdots d(p,q) \ge 0$

- 非退化 : $p = q \Leftrightarrow d(p,q) = 0$ - 対称 : d(p,q) = d(q,p)

- 三角不等式 : $d(p,r) + d(r,q) \ge d(p,q)$

- 距離 $\operatorname{dis}_{N}(u,v)$
 - 最短(*u*, *v*)路*P*の重み
- 重み:辺重み総和 $w(P) = \sum_{e \in P} w(e)$ $\checkmark w(e) > 0 \Rightarrow$ 距離公理を満たす



距離の性質

 \blacksquare dis $_G(u,v)$ satisfies the following axioms of

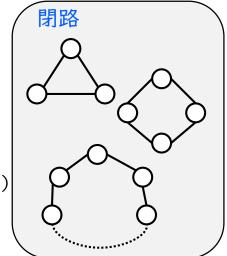
distance function:

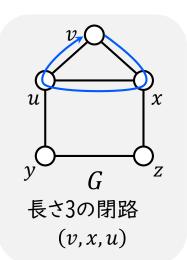
- \triangleright For any $u, v, w \in V(G)$
 - $-\operatorname{dis}_G(u,v) \ge 0$ (non-negativity)
 - $-\operatorname{dis}_G(u,v)=0 \iff u=v \text{ (identity of indiscernibles)}$
 - $-\operatorname{dis}_{G}(u,v) = \operatorname{dis}_{G}(v,u) \quad (symmetry)$
 - $-\operatorname{dis}_G(u,v) \leq \operatorname{dis}_G(u,x) + \operatorname{dis}_G(x,v)$ (triangle inequality)

 $dis_G(u,v)$

基本的な定義 (6) 閉路(サイクル) (cycle)

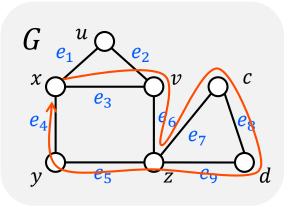
- 閉ウォーク (closed walk)
 - 始点終点が同一のウォーク
- 閉トレイル (closed trail)
 - 始点終点が同一のトレイル
- 閉路(サイクル)(cycle)
 - 始点終点が同一の路(始点終点以外は異なる点)
- ✓ 長さは3以上
- ▶ 1点のみ(辺なし)の点辺系列
 - ⇒ 長さ0のウォーク、閉ウォーク、トレイル、閉トレイル、路
 - ⇒ 閉路ではない(と定義)
 - ウォーク (walk)
 - 点辺系列 $(v_0, e_1, v_1, e_2, v_2, ..., e_n, v_n)$: 長さn (辺の数)
 - 辺をたどって動き回る : $e_i = (v_{i-1}, v_i)$ $(1 \le i \le n)$
 - 部分グラフ(もしくは性質を満たすグラフ)
 - ✓ 単純グラフ
 - \Rightarrow 点系列 $(v_0, v_1, v_2, ..., v_n)$ で指定可 : $(v_{i-1}, v_i) \in E(G)$ $(1 \le i \le n)$
 - トレイル (trail)
 - 同じ辺を通らないウォーク
 - 路 (パス) (path)
 - 同じ点を通らないウォーク





閉トレイル (Closed Trail)

- 同じ辺を通らない始点と終点が一致するウォーク
 - $-P = (v_0, e_1, v_1, e_2, ..., v_{k-1}, e_k, v_k)$
 - ただし $v_0 = v_k, e_i \neq e_i \ (i \neq j), \ e_i = (v_{i-1}, v_i) \ (1 \leq i \leq k)$
 - 長さk(辺数)

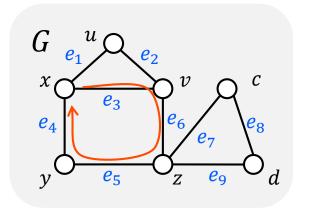


$$P = (x, e_3, v, e_6, z, e_7, c, e_8, d, e_9, z, e_5, y, e_4, x)$$

$$P = (x, v, z, c, d, z, y, x)$$
is a closed trail of length 7 in G

閉路 (Cycle)

- 同じ点を通らない始点と終点が一致するウォーク
 - $-P = (v_0, e_1, v_1, e_2, \dots, v_{k-1}, e_k, v_k)$
 - ただし $v_0 = v_k, v_i \neq v_j \ (0 \leq i < j < k), \ e_i = (v_{i-1}, v_i) \ (1 \leq i \leq k)$
 - 長さk(辺数)



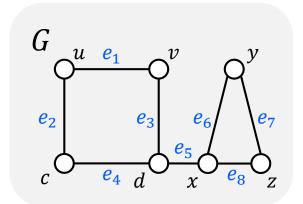
$$P = (x, e_3, v, e_6, z, e_5, y, e_4, x)$$

$$P = (x, v, z, y, x)$$
is a cycle of length 4 in G

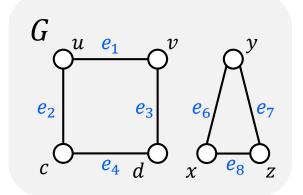
基本的な定義 (7) 連結(connected)

■連結グラフ

- 任意の2点間に路があるグラフ
- 任意の2点が連結であるグラフ



connected



not connected

連結成分

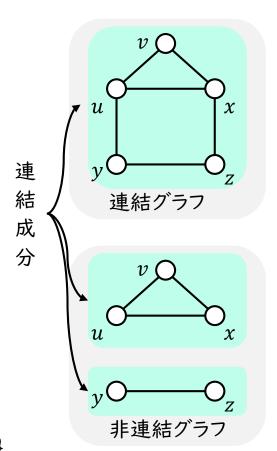
- Gの連結成分
 - Gの極大な連結である部分グラフ
- 連結成分が一つのグラフ
- ✓ 連結グラフ
- ▶ 点間の連結関係 u ~ v
 - 2点uvは連結 ⇔ 2点uv間に路が存在する
- 連結関係 \sim ($\subseteq V(G) \times V(G)$)
 - 同值関係

■ 反射律: $v \sim v$ $(\forall v \in V(G))$

■ 対称律: $u \sim v \Leftrightarrow v \sim u$ $(\forall u, v \in V(G))$

■ 推移律: $u \sim w, w \sim v \Rightarrow u \sim v \ (\forall u, v, w \in V(G))$

- 連結関係に関する同値類 $V_{\sim}(v) = \{u \in G | v \sim u\}$
 - 点集合の分割
 - $-V_{\sim}(u)=V_{\sim}(v) \text{ \sharp t t $V_{\sim}(u)\cap V_{\sim}(v)=\emptyset$ $(\forall u,v\in V(G))$}$
 - 連結成分の点集合

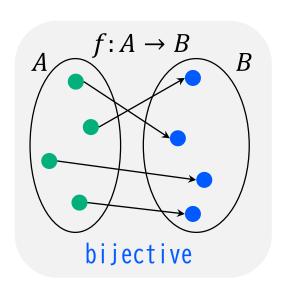


関係(確認)

- 集合A(定義域)から集合B(値域)への関係R
 - $-a \in A \lor b \in B$ が関係Rにある
 - \blacksquare R(a,b)
 - \blacksquare aRb
- $> R: A \rightarrow B$
- $\triangleright R \subseteq A \times B$

例: *A* = {1,2,3}上の「より小さい関係<」

- -1 < 2, 1 < 3, 2 < 3
- $< = \{(1,2), (1,3), (2,3)\}$
 - 1 < 1,2 < 1,2 < 2,...,3 < 3
- ◆集合族上の関係:同型
 - 同型(≅):全単射が存在する
 - $\neg A \cong B \Longrightarrow |A| = |B|$
 - 同型ならば濃度が等しい
 - 集合の濃度:同型≅による同値類



関係(確認)

■ 同値関係(≡)

- 反射律 : $\forall a \in S (a \equiv a)$

- 対称律 : $\forall a, b \in S (a \equiv b \Rightarrow b \equiv a)$

- 推移律 : $\forall a, b, c \in S (a \equiv b, b \equiv c \Rightarrow a \equiv c)$

 \triangleright 同値類 $[a]_{\equiv} = \{b \mid a \equiv b\}$

■ 半順序関係(≼)

- 反射律 : $\forall a \in S (a \leq a)$

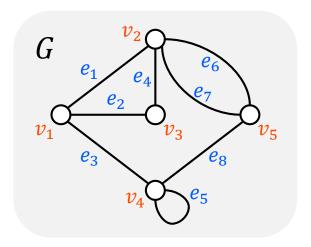
- 反対称律: $\forall a, b \in S (a \leq b, b \leq a \Rightarrow a \equiv b)$

- 推移律 : $\forall a, b, c \in S (a \leq b, b \leq c \Rightarrow a \leq c)$

1-1 (3) グラフの行列表現

隣接行列 (adjacency matrix)

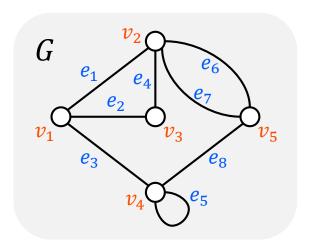
- $\blacksquare V(G) = \{v_1, v_2, ..., v_n\}, E(G) = \{e_1, e_2, ..., e_m\}$
- Gの隣接行列
 - $-n \times n$ 行列 $A(G) = [a_{ij}]$
 - $-a_{ij}$: v_i と v_j をつなぐ辺の数



Adjacency Matrix A(G)

隣接行列の性質

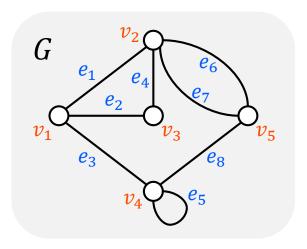
- 各行の和 (row sum)
- 各列の和 (column sum)
 - 対応する点の次数
- 対称行列 (無向グラフ)



Adjacency Matrix A(G)

接続行列 (incidence matrix)

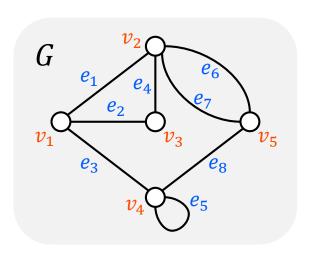
- $\blacksquare V(G) = \{v_1, v_2, ..., v_n\}, E(G) = \{e_1, e_2, ..., e_m\}$
- Gの接続行列
 - $-n \times m$ 行列 $B(G) = [b_{ij}]$
 - b_{ij} : v_i に接続する e_j の数



Incidence Matrix B(G)

接続行列の性質

- 定理 (Theorem 1.2)
 - 各行の和 (row sum)
 - 対応する点の次数



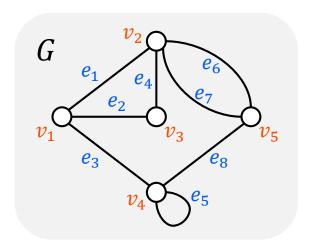
	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	sum
v_1	/1	1	1	0	0	0	0	0	3
v_2	1	0	0	1	0	1	1	0	4
v_3	0	1	0	1	0	0	0	0	2
v_4	0	0	1	0	2	0	0	1	4
v_5	$\sqrt{0}$	0	0	0	0	1	1	0 0 0 1 1	3

Incidence Matrix B(G)

row

接続行列の性質

- 定理 (Theorem 1.2)
 - 各列の和 (column sum) = 2



Incidence Matrix B(G)

1-1 (4) 次数と辺数

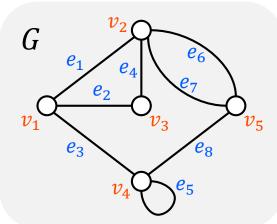
■ 定理 (Theorem 1.3)

$$\sum_{v \in V(G)} \deg_G(v) = 2|E(G)|$$

□証明(Proof):

$$= 2|E(G)| = \sum_{j=1}^{m} \sum_{i=1}^{n} b_{ij} \quad (= \text{sum of all entries in } B(G))$$

$$\therefore \sum_{v \in V(G)} \deg_G(v) = 2|E(G)| \quad \blacksquare$$



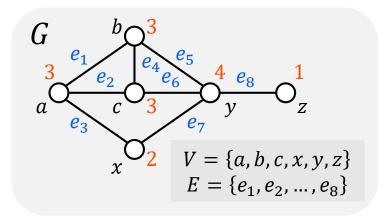
	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	SUM
v_1	/1	1	1	0	0	0	0	0	3
v_2	1	0	0	1	0	1	1	0	4
v_3	0	1	0	1	0	0	0	0	2
v_4	0	0	1	0	2	0	0	1	4
v_5	$\sqrt{0}$	0	0	0	0	1	1	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$	3

Incidence Matrix B(G)

次数と辺数

■ 定理 (Theorem 1.3)

$$\sum_{v \in V(G)} \deg_G(v) = 2|E(G)|$$



	e_1	e_2	e_3	e_4	e_5	<i>e</i> ₆	<i>e</i> ₇	<i>e</i> ₈	次数
а	Г 1	1	1	0	0	0	0	0	7 3
b	1	0		1	1	0	0	0	3
С	0	1	0	1	0	1	0	0	3
χ	0	0	1	0	0	0	1	0	2
y	0	0	0	0	1	1	1	1	4
\boldsymbol{Z}	Γ 0	0	0	0	0	0	0	1	1

■系

- 次数の総和は偶数

接続行列の要素の二重数え上げ

行方向:点次数

列方向:2 列数=辺数

奇点の数

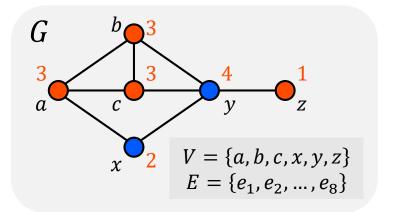
■系

- 奇点(次数が奇数の点)は偶数個

□証明:

- (V_{odd}, V_{even}): V(G)の分割
 - *V*odd: 奇点の集合
 - V_{even}: 偶点の集合
 - $\checkmark V_{\text{odd}} \cup V_{\text{even}} = V(G)$
 - $\checkmark V_{\text{odd}} \cap V_{\text{even}} = \emptyset$
- $-\sum_{v\in V(G)}\deg_G(v)=2|E(G)|$
- $-\sum_{v \in V_{\text{odd}}} \deg_G(v) + \sum_{v \in V_{\text{even}}} \deg_G(v) = 2|E(G)|$
 - 偶点の次数総和は偶 ⇒ 奇点の次数総和も偶

 $|V_{odd}| = even \blacksquare$



even