

離散構造とアルゴリズム (4-3) 問題の難しさ

高橋篤司 東京工業大学 工学院 情報通信系

4-3 (1) NPとP

- アルゴリズム設計の理論的背景
- > NP
 - Nondeterministic Polynomial
 - 非決定性多項式
 - 非決定性多項式時間アルゴリズムで解ける判定問題の集合
- > **P**
 - (Deterministic) Polynomial
 - (決定性)多項式
 - (決定性) 多項式時間アルゴリズムで解ける判定問題の集合
- ■解説書+辞典
 - Garey and Johnson, "Computers and Intractability,
 A Guide to the Theory of NP-Completeness",
 Freeman and Co., 1979

計算量理論のキーワード

- 計算複雑度(Computational Complexity)
 - 時間計算量
 - 空間計算量
- P, NP, NP完全(NP-complete)
 - 判定問題の特徴
- NP困難(NP-hard)
- 非決定性多項式時間アルゴリズム
 - Nondeterministic Polynomial Time Algorithm
- 多項式時間アルゴリズム
 - (Deterministic) Polynomial Time Algorithm
- 多項式時間還元 (Polynomial Time Reduction)

アルゴリズム

■ 決定性アルゴリズム

- 同一入力に対し、出力は一意に定まる
 - 確率的アルゴリズム: 出力は一意に定まる
 - 乱数も入力の一部と考える

■ 非決定性アルゴリズム

- 同一入力に対し、出力は異なることがある
- 判定問題を解く正当な非決定性アルゴリズム
 - 正解: Yes ⇒ 出力: YesまたはNo (常にNoはダメ)
 - 正解: No ⇒ 出力: No

非決定性アルゴリズム (Nondeterministic Algorithm)

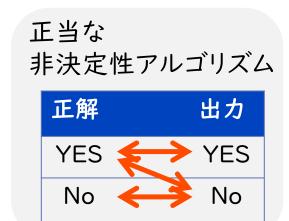
- 判定問題(problem) $\Pi = (I, Q(x))$
 - 入力集合Iと質問Q(x)の組
- 答えが「Yes」か「No」である問題
- Algorithm 4.2 (非決定性アルゴリズム)
 - 入力: $s \in I$ (ただし $\Pi = (I, Q(x))$ は判定問題)
 - 出力:「Yes」or「No」

Step 1: (非決定性)

- Generate an evidence γ (Pick up one arbitrary among exponential candidates)

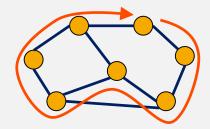
Step 2: (決定性)

- Check the evidence γ
 - If the evidence is correct, then output YES
 - Otherwise, output NO
- 非決定性多項式時間アルゴリズム
 - 多項式時間で正当な出力
 - Algorithm 4.2
 - Step 1: 証拠の生成が多項式時間
 - Step 2: 証拠の確認が多項式時間



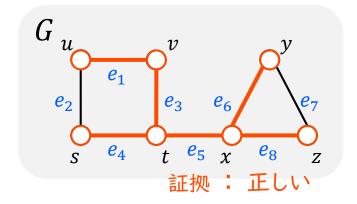
問題: ハミルトングラフか?

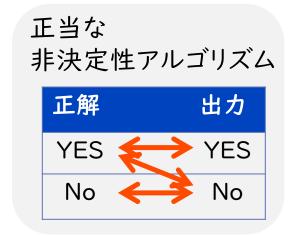
証拠γ: 点の順列

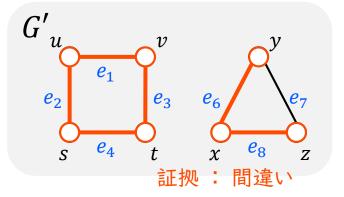


連結グラフ

- ■連結性判定問題(CON)(判定)
 - 入力
 - グラフG
 - 質問
 - *G*は連結か?
- ✓証拠の例
 - 点対間の路の集合,全域木



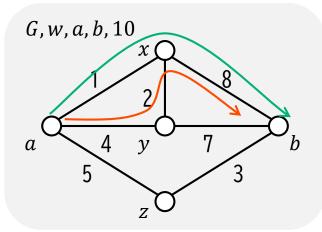




距離

■ 距離判定問題(DIS) (判定)

- 入力 DIS ∈ NP
 - 連結グラフG, 重み関数w: $E(G) \to \mathbb{R}^+$, $2 \leq u, v \in V(G)$, 非負実数r
- 質問
 - $\operatorname{dis}_{(G,w)}(u,v) \leq r \hbar$?
- ✓証拠の例
 - \blacksquare (G,w)の重みr以下の(u,v)-路



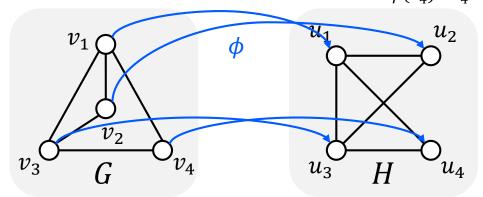
9 証拠: 正しい

14 証拠: 間違い

正当な 非決定性アルゴリズム

グラフ同型

- グラフ同型判定問題(ISO) (判定)
 - 入力 ISO ∈ NP
 - \blacksquare グラフG,H
 - 質問
 - *GとH*は同型か?
- ✓証拠の例
 - 同型写像 $\phi: V(G) \rightarrow V(H)$ $\phi(v_1)=u_1$ $\phi(v_2)=u_2$ $\phi(v_3)=u_3$ $\phi(v_4)=u_4$

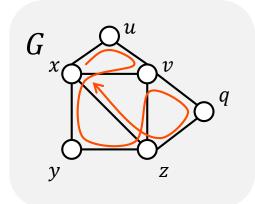


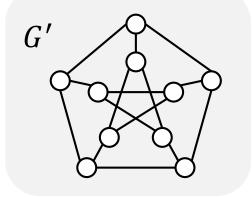
オイラーグラフ

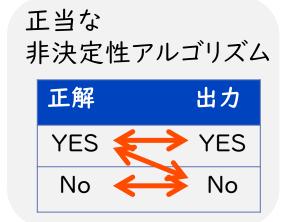
- 連結オイラーグラフ判定問題(C-EG)(判定)
 - 入力

 $C-EG \in NP$

- 連結グラフG
- 質問
 - \blacksquare Gはオイラーグラフか?
- ✓証拠の例
 - オイラー閉トレイル,次数系列

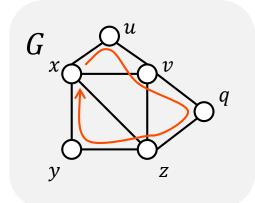


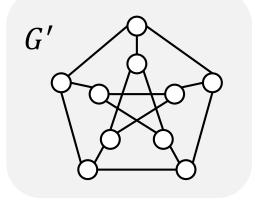




ハミルトングラフ

- ハミルトングラフ判定問題(HG)(判定)
 - 入力
 - グラフG
 - 質問
 - **■** *G*はハミルトングラフか?
- ✓証拠の例
 - ハミルトン閉路





正当な 非決定性アルゴリズム 正解 出力 YES YES No No

 $HG \in NP$

ハミルトングラフ

- 非ハミルトングラフ判定問題(co-HG)(判定)
 - 入力

co-HGがNPに属すかは不明

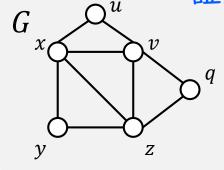
- グラフG
- 質問
 - **■** *G*はハミルトングラフでは<u>ない</u>か?
- ✓証拠の例

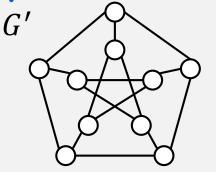
ハミルトングラフのとき

????

常にNoと出力できる

証拠は? *G*





正当な 非決定性アルゴリズム

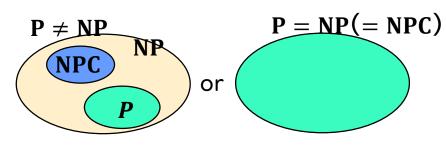
素数

- ■素数判定問題(PRIMES)(判定)
 - 入力
 - 自然数n
 - 質問
 - *n*は素数か?
- ✓証拠の例
 - Noの証拠: nの素因数分解
 - Yesの証拠: ???
 - Agrawal-Kayal-Saxena 素数判定法(2002)
 - $PRIMES \in P$

co−PRIMES ∈ **NP** PRIMES ∈ **NP**

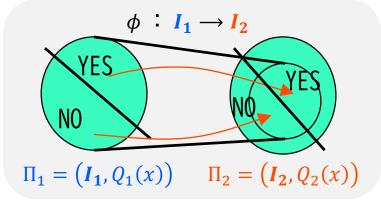
P ≠ NP予想

- 判定問題 (Yes/No問題)
 - NP: 判定問題の集合
 - Nondeterministic Polynomial time algorithmあり
 - P : 判定問題の集合
 - (Deterministic) Polynomial time algorithmあり
 - NPC: NPの中の最も難しい判定問題の集合
 - NPC のある問題が多項式時間で解ける ⇒NPに属すすべての問題が多項式時間で解ける
 - NP完全(NP-complete)問題
 - 判定問題∈ NPC
 - SAT, 3-SAT, COL, HG, IS, TS, ···
- ▶ 事実: P ⊆ NP
- ▶ 予想: P ≠ NP



4-3(2)多項式時間還元

- 多項式時間還元 (polynomial time reduction)
 - 判定問題間の問題の難しさの関係を与える
 - どちらが難しくはないか?
- 判定問題 $\Pi_1 = (I_1, Q_1(x))$ から判定問題 $\Pi_2 = (I_2, Q_2(x))$
 - 多項式時間還元φ: *I*₁ → *I*₂
 - Yes/Noの性質を保ったまま
 - 多項式時間で変換できる
 - $\phi: I_1 \to I_2$ が存在 $\Rightarrow \Pi_1 \propto \Pi_2$

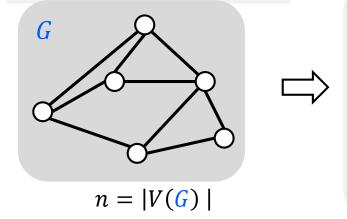


- \blacksquare $\Pi_1 \propto \Pi_2$
- ✓ II₂が多項式時間で解ける⇒ II₁は多項式時間で解ける
- Ⅱ1を解く多項式時間アルゴリズム
 - 入力I₁を入力I₂に多項式時間で変換
 - I_2 の解を多項式時間で得て I_1 の解として出力
- ✓ Π_1 が難しく, Π_2 が易しいということはない

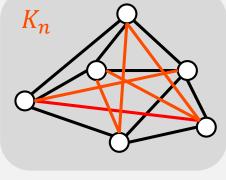
多項式時間還元の例: HG ∝ TS

- ハミルトングラフ判定問題(HG)
 - 入力 : グラフG
 - 質問: *G*はハミルトングラフか?
- 巡回セールスマン判定問題(TS)
 - 入力 : K_n , $w: E(K_n) \to \mathbb{R}^+$, r
 - 質問: (K_n, w) に重みr以下のハミルトン閉路は存在するか?

HG: ハミルトングラフ判定問題



TS: 巡回セールスマン判定問題



r := n

n Gの辺のみ $\geq n+1$ その他の辺含む

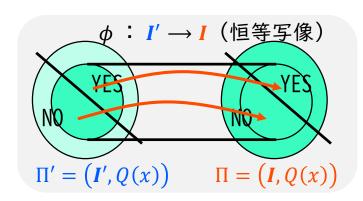
-1 $(e \in E(G))$

 $-2 (e \notin E(G))$

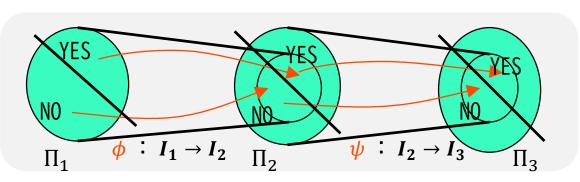
Gはハミルトングラフ \Leftrightarrow (K_n, w) の最小ハミルトン閉路の重みはn

多項式時間還元の性質

- 定理 (Theorem 4.4)(部分問題)
 - 判定問題 $\Pi = (I, Q(x)) \in \mathbf{NP}$
 - Π の部分問題 $\Pi' = (I', Q(x)), I' \subseteq I$ $\Rightarrow \Pi' \propto \Pi$
- □ 証明:
 - 恒等写像φ: *I'* → *I*は多項式時間還元 ■



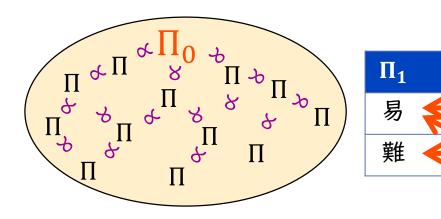
- 定理 (Theorem 4.5) 多項式間還元は推移律を満たす
- **□** 証明 : $\Pi_1 = (I_1, Q_1(x)), \ \Pi_2 = (I_2, Q_2(x)), \ \Pi_3 = (I_3, Q_3(x))$
 - $-\phi:\Pi_1$ から Π_2 への多項式時間還元、 $\psi:\Pi_2$ から Π_3 への多項式時間還元 $\Rightarrow \psi \circ \phi$ は Π_1 から Π_3 への多項式時間還元
 - $\begin{array}{ccc} & \Pi_1 & \propto & \Pi_2, \Pi_2 & \propto & \Pi_3 \\ \Rightarrow & \Pi_1 & \propto & \Pi_3 & \blacksquare \end{array}$



4-3 (3) NP完全

 Π_2

- NP完全問題 Π_0
 - $-\Pi_0 \in NP$
 - $\forall \Pi \in \mathbf{NP}, \ \Pi \propto \Pi_0$

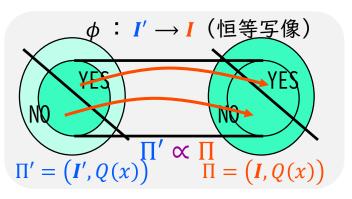


- ✓任意のNP問題よりも易しくはないNP問題
- ✓ P ≠ NPならば, 多項式時間アルゴリズムは存在しない問題
- NP完全ならば,多項式時間アルゴリズムは諦める
 - 近似アルゴリズム
 - 発見的手法

NP完全性

- 定理 (Theorem 4.6) 判定問題∏ ∈ NPは,

 あるNP完全問題∏'に対して,∏' ∝ ∏ならば,NP完全
- □証明:
 - ∀П" ∈ NP, П" ∝ П' (::NP完全の定義)かつП' ∝ П
 - ⇒ ∀Π" ∈ NP, Π" ∝ Π (::定理4.5) ■
- ▶NP完全性を示す典型的な手段
- 系 (Corollary 4.1) 判定問題∏ ∈ NPは, 部分問題∏'がNP完全ならば NP完全



NP完全性の誤った解釈

- 判定問題∏を解けと要求されている
- 多項式時間アルゴリズムが構成できない
- ightharpoonup Π ight
- ▶ ∏に対する発見的手法の開発を目指す
- ✓ I ∝ I o は, NP完全の定義から自明
 - これだけでは∏の計算複雑度は不明
 - 発見的手法開発の免罪符にはならない
- $> \Pi_0 \propto \Pi$ が示されたならば
 - あるNP完全問題 Π_0 が、解きたい問題 Π が解けると、解ける
 - この状況はあり得ない
 - 問題∏に対する発見的手法を開発する

4-3(4) 充足可能性判定問題

- 充足可能性判定問題 (Satisfiability, SAT) (判定)
 - 入力 : CNFで表現されたブール関数 f
 - > CNF
 - Conjunctive Normal Form, 和積形, NOT-OR-AND
 - 質問: *f*は充足可能か?

■例

- $\neg F = (a \lor b) \land (\neg a \lor \neg b \lor c) \land (\neg a \lor \neg c)$
 - \blacksquare F is satisfiable
 - $a = 1, b = 0, c = 0 \implies F = 1$
- $-F = (a \lor b) \land (a \lor \neg b) \land (\neg a \lor b) \land (\neg a \lor \neg b)$
 - F is unsatisfiable

Boolean Logic

- Boolean variable
 - $a,b \in \mathbb{B} = \{0,1\} = \{\text{False, True }\}$
- Unary operator
 - : NOT
- Binary operator

 \wedge : AND, \vee : OR

■ Truth Table

а	$\neg a$
0	1
1	0

a	b	a∧b	a	b	$a \lor b$
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

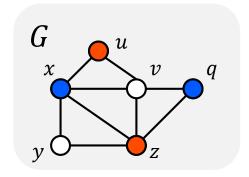
а	b	С	$a \lor b$	$(a \lor b) \land c$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

SATのNP完全性

- 定理 (Theorem 4.7) SATはNP問題 (SAT ∈ NP)
- □証明:
 - *f* を構成する論理変数への値の割当は, *f* が充足可能であることの証拠となる ■
- 定理 (Theorem 4.8) SATはNP完全 (SAT ∈ NPC)
- □証明の概要(Cook):
 - アルゴリズムの挙動はチューリング機械で表現できる
 - 入力の大きさの多項式オーダーのブール関数で,チューリング 機械の出力を記述できる
 - 任意のNP問題はSATに多項式時間還元できる ■

3彩色判定問題

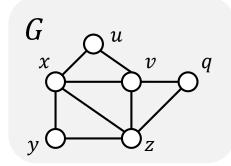
- 3彩色判定問題(3-COL)(判定)
 - 入力
 - グラフG
 - 質問
 - Gを3彩色できるか?



- ■グラフの彩色
 - 隣接点に同色が割り当てられないように、点に色を割り当てる

多項式時間還元の例: 3-COL ∝ SAT

- >3彩色の証拠をブール関数で表現
 - 正しい彩色 ⇔ ブール関数が充足
- グラフG = (V, E)の3彩色の証拠
 - 3色が使われる
 - 各点は1色
 - 隣接点は異なる色



- $\blacksquare V(G) = \{v_1, v_2, ..., v_n\}, E(G) = \{e_1, e_2, ..., e_m\}$
 - 各点 v_i に対して,色1,2,3に対応する3変数 x_{i1},x_{i2},x_{i3}

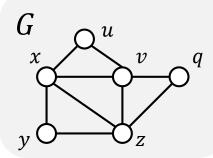
$$-x_{ij} = \begin{cases} 1 & \text{if } 点 v_i は色 j \\ 0 & \text{otherwise} \end{cases}$$

多項式時間還元の例: 3-COL ∝ SAT

- >3彩色の証拠をブール関数で表現
 - $\triangle v_i$ は色1, 2, 3いずれか1色(少なくとも1色かつ2色でない)

$$P_i = (x_{i1} \lor x_{i2} \lor x_{i3}) \land (\overline{x_{i1}} \lor \overline{x_{i2}}) \land (\overline{x_{i1}} \lor \overline{x_{i3}}) \land (\overline{x_{i2}} \lor \overline{x_{i3}})$$

✓すべての点は1色



- 隣接点 v_i と v_j は異なる色(隣接点は同色ではない)

$$Q_{(i,j)} = \left(\overline{x_{i1}} \vee \overline{x_{j1}}\right) \wedge \left(\overline{x_{i2}} \vee \overline{x_{j2}}\right) \wedge \left(\overline{x_{i3}} \vee \overline{x_{j3}}\right)$$

✓すべての隣接点は異なる色

$$\bigwedge_{(i,j)\in E(G)}Q_{(i,j)}$$

4-3 (5) NP完全問題

- ■3充足可能性判定問題(3-SAT)(判定)
 - 入力 : 各和節が3リテラルからなるCNF表現のブール関数f
 - リテラル: 肯定形もしくは否定形の変数
 - 質問: *f*は充足可能か?

■例

$$-f = (a \lor b \lor c) \land (\neg a \lor \neg b \lor c) \land (a \lor \neg c \lor \neg d)$$

3-SATのNP完全性

- 定理 (Theorem 4.9) 3-SATはNP完全 (3-SAT ∈ NPC)
- ロ証明: SAT ∝ 3-SATを示す
 - 充足可能性を保ちつつ,各節を,3リテラルの節(複数)に変換
 - SATの入力fに含まれないブール変数y を用意
- ✓ 1リテラル節
- ✓ 2リテラル節
- \checkmark kリテラル(k ≥ 4)
 - $(x_1 \lor x_2 \lor \cdots \lor x_k) \Rightarrow (x_1 \lor x_2 \lor y_1) \land (\overline{y_1} \lor x_3 \lor y_2) \land (\overline{y_2} \lor x_4 \lor y_3) \land \cdots \land (\overline{y_{k-3}} \lor x_{k-1} \lor x_k)$
- 得られる3-SATの入力サイズは, | *f* | の多項式オーダー ■
- ▶ 2-SATは線形時間で判定可能(P)

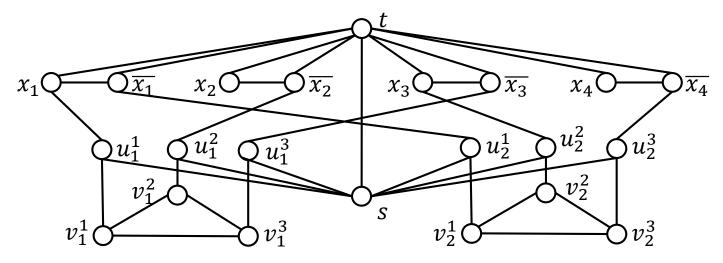
3-COLのNP完全性

- 定理 (Theorem 4.10) 3-COLはNP完全 (3-COL ∈ NPC)
- 証明: 3-SAT

 3-COLを示す
 - $-\phi:f\mapsto G(f)$
 - 3-SATのブール関数fは充足可能 \Leftrightarrow グラフG(f)は3彩色可能
 - V(G(f))
 - 各ブール変数 x_i に対して $2 \pm x_i$ 、 $\overline{x_i}$ (リテラル点)
 - 各節 C_i に対して6点 $u_i^1, u_i^2, u_i^3, v_i^1, v_i^2, v_i^3$
 - 2点s,t

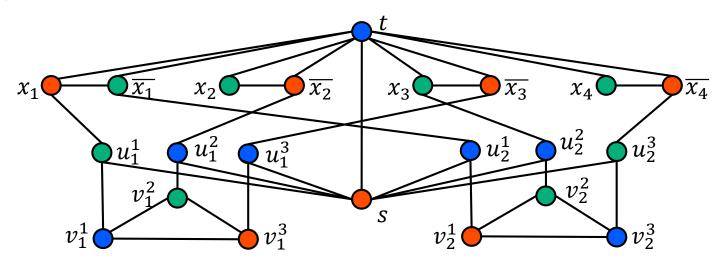
E(G(f))の詳細は略

 $\checkmark f = (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_4})$ に対応するG(f)



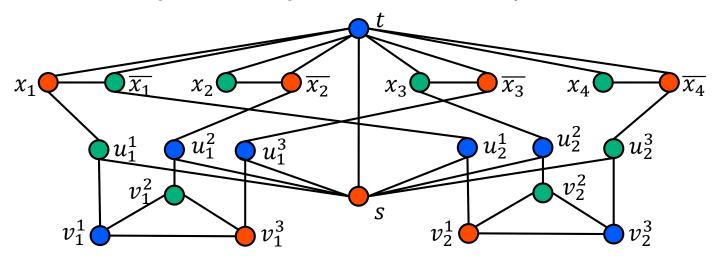
3-COLのNP完全性

- 定理 (Theorem 4.10) 3-COLはNP完全 (3-COL ∈ NPC)
- □証明 (cont.):
 - G(f) が3彩色できるならば、一般性を失わず、Sは赤、tは青で彩色とする
 - 変数 x_i
 - リテラル点 x_i , $\bar{x_i}$ は赤または緑(赤リテラル点が充足と考える)
 - 節*C_i*
 - u_i^j は青または緑 $\Rightarrow v_i^j$ の3彩色のためは全部青はダメ
 - u_i^j が緑のためには赤リテラル点と隣接⇒節に赤リテラル点(3彩色可能⇔充足可能)
- \checkmark G(f) の変数割り当て $x_1 = 1, x_2 = x_3 = x_4 = 0$ に対応する彩色



3-COLのNP完全性

- 定理 (Theorem 4.10) 3-COLはNP完全 (3-COL ∈ NPC)
- □証明 (cont.):
 - fが充足可能 \Leftrightarrow G(f)は3彩色可能
 - $-\phi:f\mapsto G(f)$
 - 3-SATから 3-COLへの多項式時間還元
 - -|V(G(f))| = 2l + 6c + 2, |E(G(f))| = 3l + 12c + 1
 - *l*: リテラル数,*c*: 節数
- $\checkmark f = (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_4})$ に対応するG(f)



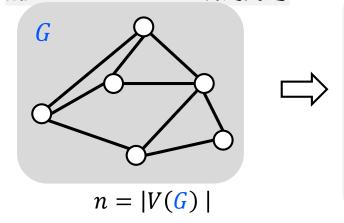
NP完全問題

- > SAT \propto 3-SAT \propto 3-COL \propto SAT
- 定理 (Theorem 4.11)
 - ハミルトングラフ判定問題(HG)はNP完全(HG ∈ NPC)
 - 独立点集合判定問題(IS) はNP完全(IS ∈ NPC)
- □証明(詳細略)
 - HG ∈ NP, 3-SAT \propto HG
 - IS \in NP, 3-SAT \propto IS
- 系 (Corollary 4.2)
 - 巡回セールスマン判定問題(TS) はNP完全(TS ∈ NPC)
- □証明: TS ∈ NP, HG ∝ TS

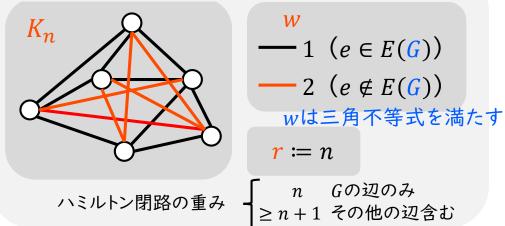
巡回セールスマン問題

- 三角巡回セールスマン判定問題(T-TS)(判定)
 - 入力 : K_n , $w: E(K_n) \to \mathbb{R}^+$, r (三角不等式を満たす)
 - 質問: (K_n, w) に重みr以下のハミルトン閉路は存在するか?
- ✓NP完全
 - $T-TS \in NP$
 - HG ∝ T-TS は既に示した
 - TSへの多項式時間還元はT-TSへの多項式時間還元でもある

HG: ハミルトングラフ判定問題



TS: 巡回セールスマン判定問題

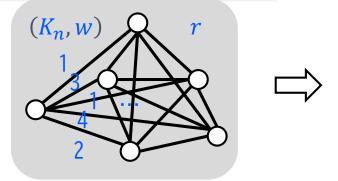


Gはハミルトングラフ \Leftrightarrow (K_n, w) の最小ハミルトン閉路の重みはn

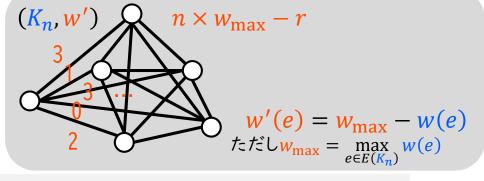
巡回セールスマン問題

- ■最大巡回セールスマン判定問題 (MAX-TS) (判定)
 - 入力 : K_n , $w: E(K_n) \to \mathbb{R}^+$, r
 - 質問: (K_n, w) に重みr以上の \cap ミルトン閉路は存在するか?
- ✓NP完全
 - $MAX-TS \in NP$
 - \blacksquare TS \propto MAX-TS

TS:巡回セールスマン判定問題



MAX-TS:最大巡回セールスマン判定問題



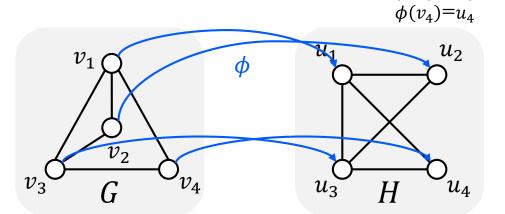
重みαのハミルトン閉路

 \Leftrightarrow 重み $n \times w_{\text{max}} - a$ のハミルトン閉路

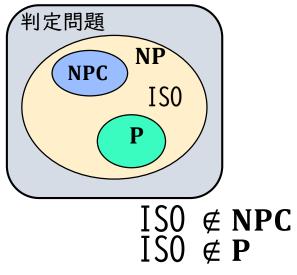
重みr以下のハミルトン閉路が存在 \Leftrightarrow 重み $n \times w_{max} - r$ 以上のハミルトン閉路が存在

グラフ同型

- グラフ同型判定問題(ISO) (判定)
 - 入力 ISO ∈ NP
 - \blacksquare グラフG,H
 - 質問
 - *GとH*は同型か?
- ✓証拠の例
 - 同型写像 $\phi: V(G) \rightarrow V(H)$ $\phi(v_1)=u_1$ $\phi(v_2)=u_2$ $\phi(v_3)=u_3$



P ≠ NPの場合



P ≠ NP予想

- 判定問題 (Yes/No問題)
 - NP: 判定問題の集合
 - Nondeterministic Polynomial time algorithmあり
 - P : 判定問題の集合
 - (Deterministic) Polynomial time algorithmあり
 - NPC: NPの中の最も難しい判定問題の集合
 - NPC のある問題が多項式時間で解ける ⇒NPに属すすべての問題が多項式時間で解ける
 - NP完全(NP-complete)問題
 - 判定問題∈ NPC
 - SAT, 3-SAT, COL, HG, IS, TS, ···
- ▶ 事実: P ⊆ NP
- ▶ 予想: P ≠ NP

