
Advanced Lecture on Internet Infrastructure

7. NAT, DHCP

Masataka Ohta

mohta@necom830.hpcl.titech.ac.jp
ftp://chacha.hpcl.titech.ac.jp/infra7e.ppt

Structure of the Internet

• CATENET Model
– Many small (w.r.t. # of devices) datalinks

interconnected by IP (Internet Protocol) routers

The world

Network Network

Network
Network

Network

Network

The World and Networks (before Internet)

Ｇ

Ｇ

Ｇ

Ｇ ：Interworking Unit

Ｇ

The World = the Internetト

Datalink Datalink

Datalink
Datalink

Datalink

Datalink

CATENET Model

Ｒ

Ｒ

Ｒ

Ｒ ：Router

Ｒ

NAT (Network Address
Translator, rfc1631)

• placed at the border between the Internet
and a private IP network

• maintain small # of IP addresses of the
Internet
– (dynamically) correspond private IP addresses

and IP addresses of the Internet

– idea as a measure for IPv4 address shortage
• not many hosts need fixed IP address? (only servers)

Dial-up and NAT

• when dial-up internet access was dominant
– intermittent internet connection was dominant

• such users can have clients but no servers

• server is owned by special entity (ISP) and cost a lot

– even companies with persistent connectivity
• only needs small number of servers

– ISP rules the Internet

• (should) not be the Internet in persistent
connectivity era
– cloud?

private IP
network

Internet

N
A

T
 device

global IP addressprivate IP address

source address
translation

mechanism of NAT

destination address
translation

the World

IP Network IP Network

the Internet
IP Network

IP Network

IP Network

NAT and the Internet

Ｎ

Ｎ

Ｎ

Ｎ ：NAT Device

Ｎ

Format of IPv4 Packets

Source Address

Destination Address

Optional Header (Variable Length, not Actually Used)

Header ChecksumL4 Protocol

Packet Length4 Header
Length

4 Bytes

Other Information

Remaining Transport Header and Payload

IP (L
3) H

eader

Destination Port NumberSource Port Number

T
ransport (L

4)
H

eader

Layering Structure of the Internet

Physical Layer

Datalink Layer

Internetworking
Layer

Transport Layer

Application Layer

Here is the Essence of
the Internet

Ｈ ＨＲ Ｒ

physical layer
datalink layer
network layer
transport layer

application layer

physical layer
datalink layer
network layer
transport layer

application layer

physical layer
datalink layer
network layer

end
system
(host)

end
system
(host)

network

Ｈ ＨＮ

primitive
NAT device

transport layer
application layer

physical layer
datalink layer
network layer
transport layer

application layer

physical layer
datalink layer
network layer
transport layer

application layer

physical layer
datalink layer
network layer

end
system
(host)

end
system
(host)

Primitive NAT

• translate address
– modify IP header only?

• source address, destination address, header check
sum

• not so against the E2E principle?

• addresses in payload cannot be translated
– ftp, ICMP etc. (protocol dependent translation necessary)

– transport checksum must also be modified
• NAT device must know transport protocols

– what if, new transport protocols are introduced?

End to End Argument in Original
Paper by Saltzer et. al.

http://groups.csail.mit.edu/ana/Publications/PubPDFs/End-to-End%20Arguments%20in%20System%20Design.pdf

• The function in question can completely and
correctly be implemented only with the knowledge
and help of the application standing at the end
points of the communication system. Therefore,
providing that questioned function as a feature of
the communication system itself is not possible.
(Sometimes an incomplete version of the function
provided by the communication system may be
useful as a performance enhancement.)

IPv4 TCP packet format

4 Bytes

T
ranspot

(L
4) headerwindow

checksum

sequence number

acknowledge number
offset flagsunused

urgent pointer

options,,,

data

Source Address

Destination Address

Optional Header (Variable Length, not Actually Used)

Header Checksum6

Packet Length4 Header
Length

Other Information
IP (L

3) H
eader

Destination Port NumberSource Port Number

IPv4 UDP packet format

payload

transport
(L

4) header

length check sum

Source Address

Destination Address

Optional Header (Variable Length, not Actually Used)

Header Checksum17

Packet Length4 Header
Length

4 Bytes

Other Information
IP (L

3) H
eader

Destination Port NumberSource Port Number

IP Address Saving by NAT

• for hosts in private IP network
– assign global address only for active hosts

– cannot know which host is active
• guess by timeout?

– inaccurate

• TCP packet may be monitored to detect start and
end of connections

• not applicable to UDP
– needs detailed knowledge on application layer

Ｈ ＨＮ

transport layer
application layer

physical layer
datalink layer
network layer
transport layer

application layer

physical layer
datalink layer
network layer
transport layer

application layer

physical layer
datalink layer
network layer

end
system
(host)

end
system
(host)

NAT
device

manage
connections

Advanced NAT

• knows various application protocols to
maintain connection
– ICMP messages are properly translated

– ASCII address in ftp may be translated

– various UDP protocols supported

– translate port numbers, too
• a global address may be shared by multiple active

connections of multiple hosts

Problems of NAT

• modification to NAT devices necessary for
every new applications
– new applications is practically impossible to be

deployed

• against E2E principle
– slow (must deeply investigate payload)

– no redundancy, load concentration
• parallel NAT devices

– cannot make connection management consistent

Ｈ ＨＮ

NAT Device

connection
management

table

Ｎ

NAT Device

connection
management

table

impossible
to maintain
consistency

Multiple NAT Devices in Parallel?

NAT Offers Security(?)

• NAT devices, by default, do not accept
incoming connections
– acting as a (incomplete and incorrect) firewall

– may be configured to pass some protocol
(SMTP, HTTP etc.) only to specific server

– may be configured to block outgoing
connections from most clients

• clients are forced to use proxy server in private
network

– protocols not supported by proxy server unusable

True Security

• end to end security
– the principle of the Internet or networking in

general

• to make all the ends secure
– there is no royal road

– there is no magic

Implication of Accepting NAT

• NAT device connects IP networks
– some internet engineers think “even if not the

Internet, IP should be good”

• NAT friendly protocols do not have IP
addresses other than IP header
– NAT friendly protocols works over non-IP

networks

– NAT makes IP not necessary

world

datalink
layer

datalink
layer

datalink
layer telephone

network
(i-mode)

private
IP

network

datalink
layer

e-mail environment today

Ｒ

Ｍ

Ｒ

Ｒ : Router

Ｎ

Ｍ : Mail GatewayＮ : NAT Device

The Internet and Structure of
Networks

• Example of Internet
– Dial-up Internet

• Example of non Internet
– i-mode

• IP, but, relaying at transport layer

– Legacy NAT
• IP, but, addresses etc. are modified, which is not

visible to terminals
– Interworking at the transport layer and above

world

datalink
layer

datalink
layer

datalink
layer telephone

network
(i-mode)

private
IP

network

datalink
layer

web environment today

Ｒ

W

Ｒ

Ｒ : Router

Ｎ

W : Web GatewayＮ : NAT Device

User

(Mobile) Phone Network

Internet

Ｇ

Ｇ ：Gateway for Interworking

Low Speed
Charged for
Time Used

Fast
Flat rated

Direct
Internet
Use

Phone Network and the Internet

Dial-up
Internet

ｉＭＯＤＥ

Persisitent
Internet

Connectivity

the Internet

Ｍ

How to Introduce New
Applications to the Internet

• design a protocol

• implement it on some hosts (end systems)

Introduce New Applications with
Applicaiton Gateways

• design a protocol

• implement it on some hosts (end systems)

• implement it on application gateways
– often involving network operators

– application-wise modifications of gateways
necessary

Evolution of Applications
with Applicaiton Gateways

• major application of the Internet was e-mail
– using internet means using e-mail

• major application of the Internet is web
– using internet means using web

• application gateways adopts to SMTP,
HTTP and DNS
– new application must be developed over

HTTP?
• insecure applications may be developed over HTTP

Collapse of the Internet

• (unautomatic) renumbering is too painful
– dynamic address allocation by DHCP/PPP

• no persistent addresses of servers

– stable private IP addresses by NAT
• only small # of global addresses need renumbering

• NAT is widely deployed
– no global connectivity

– no transparency

IP over HTTP
IP over DNS

• works within private IP network

• cooperate with a relay in the Internet
– global IP packets over HTTP/DNS through

NAT

• Ethernet over HTTP also available

DHCP (Dynamic Host Configuration
Protocol, rfc2131)

• DHCP server provide configuration
information such as IPaddress to hosts
(DHCP clients)

• reduce management effort by link broadcast
with UDP packets

• management on servers necessary

• useful only on links considered to be secure
– cryptographic security needs keys configured

DHCP

• originally BOOTP
– to start up diskless clients (thin clients) (with no

locally configured state)

• these days, primarily used for dynamic
address allocation

DHCP
client

DHCP
server

DHCP
server

ＤＨＣＰ Ｄｉｓｃｏｖｅｒ
broadcast

ＤＨＣＰ Ｏｆｆｅｒ

ＤＨＣＰ Ｏｆｆｅｒ

ＤＨＣＰ Ａｃｋ

ＤＨＣＰ Ｒｅｑｕｅｓｔ

Packet Format of DHCP (1)

• if address is unknown
– destination address is broadcast address

• only used with DHCP Discover

– source address is 0.0.0.0
• after configuration, use configured address

• over UDP
– server port number: 67

– client port number: 68

Packet Format of DHCP (2)

+-+

| op (1) | htype (1) | hlen (1) | hops (1) |

+---------------+---------------+---------------+---------------+

| xid (4) |

+-------------------------------+-------------------------------+

| secs (2) | flags (2) |

+-------------------------------+-------------------------------+

| ciaddr (4) |

+---+

| yiaddr (4) |

+---+

| siaddr (4) |

+---+

| giaddr (4) |

+---+

| |

Fields of DHCP (1)

• op
– 1: request, 2: reply

• htype
– hardware type (1=10M Ethernet)

• hlen
– MAC (hardware) address length (6 for

Ethernet)

• hops
– # of relayed hops (initially 0)

Fields of DHCP (2)

• xid
– transaction ID

• secs
– seconds after the first request

• flags
– flags

• ciaddr
– IP address of client

Fields of DHCP (3)

• yiaddr
– address allocated to client (Your address)

• siaddr
– IP address of server

• giaddr
– IP address of relay

Packet Format of DHCP (3)

| giaddr (4) |

+---+

| |

| chaddr (16) |

| |

| |

+---+

| |

| sname (64) |

+---+

| |

| file (128) |

+---+

| |

| options (variable) |

+---+

Fields of DHCP (4)

• chaddress
– client MAC (hardware) address

• sname
– hostname of server (ASCII string)

• file
– boot file name (ASCII string)

• options
– option sequence in TLV (type (tag, code),

length, value) format

DHCP and DNS (1)

• hosts in the Internet has DNS entries of
– hostname→IP address (forward lookup)

– IP address→hostname (reverse lookup)

• how can IP address from DHCP registered?
– by DDNS (Dynamic DNS) (rfc2136)

– security by shared secret key
• reverse lookup by DHCP server

• forward lookup by hosts
– key must be configured

» hostname must be configured, anyway

DHCP and DNS (2)

• how should we configure address of DNS server?

– by ND (of IPv6)
• ND have too much functionality

• ND is (formally) optional

– by DHCP (DHCPv6)
• should be proper, if DHCP is available

– by well known anycast address
• may be used anywhere

• may be overridden by DHCP etc.

Wrap-up

• legacy NAT has been
– against E2E principle

– obstacle to new applicaitons

– such problems of NAT can be removed
• slides follow

• DHCP
– useful

– some configuration is always necessary (at least
on server side)

End to End NAT

Masataka Ohta

IP Addresses are Running Out!

• IETF should be able to address the issue
– so far, not so much

• address saving by NAT
– destroy E2E Internet

– many protocols do not work over NAT

• IP address space extension by IPv6
– political compromise without considering real world

operations

– too much useless/harmful functions such as optional
header, PMTUD, SLAAC, link local address, etc.

End to End Argument in Original
Paper by Saltzer et. al.

http://groups.csail.mit.edu/ana/Publications/PubPDFs/End-to-End%20Arguments%20in%20System%20Design.pdf

• The function in question can completely and
correctly be implemented only with the knowledge
and help of the application standing at the end
points of the communication system. Therefore,
providing that questioned function as a feature of
the communication system itself is not possible.
(Sometimes an incomplete version of the function
provided by the communication system may be
useful as a performance enhancement.)

Background

• according to the end to end argument
– NAT can completely and correctly be implemented only

with the knowledge and help of the application standing
at the end points of the communication system

• legacy NAT without relying on the knowledge and help of end
hosts is incomplete and incorrect without E2E transparency

• a natural question is “how is converse?”
– With the knowledge and help of the application

standing at the end points of the communication system
• Can NAT be implemented completely and correctly?

Legacy NAT

legacy NAT
(bidirectional
translation of

address,
port number

and checksum)

end
host

almost
invisible

cannot offer help

port number
collision with
other hosts
possible

private IP networkpublic Internet

End to End NAT
- actively inform end existence of NAT-

• inform each end system in private IP network

– public address shared by the end system

– range of port # assigned to the end system

– how to communicat with NAT GW (address,
port)

through DHCP or PPP

• each end system
– help NAT GW with its knowledge to make

NAT operation complete and correct

Operations of End to End NAT

• NAT gateway
– translate destination address of incoming

packets by destination port number
• no translation of port # or transport check sum

• end system behind NAT
– translate of destination address back to public

address
• transport checksum is, now, correct

– restrict source port # of outgoing packets to
those assigned to the end system

Layering Structure of
End to End NAT

Public IP

Transport

Public IP Public IP

NAT GW

Private IP (transport checksum not verified)

DHC S DHC C

Transport

Applications

DHC Server End System

Information
on NAT

UDP UDP

Application Relays

: The Global Internet : Private IP Network

No address
translation
for outgoing packets (except for ICMP error) Address translation for incoming packets

with public source addresses

Legacy NAT

legacy NAT
(bidirectional
translation of

address,
port number

and checksum)

end
host

almost
invisible

cannot offer help

port number
collision with
other hosts
possible

private IP networkpublic Internet

End to End NAT

E2E NAT
(only translate

destination address
of incoming

packets)

end
host

inform
NAT info.

port number collision
impossible

private IP networkpublic Internet

restrict source
port #

reverse translation
of destination address

Equivalent to Direct Internet
Connection

End
Host

restrict source
port #

restrict destination
port #

public Internet

Properties of End to End NAT

• full E2E transparency
– as long as protocols have port # or equivalent

– PORT command of ftp works, naturally

• may be nested with hierarchy

• compatible with
– legacy NAT, ICMP, DNS reverse look up (incl.

port #), multicast, mobility (with extension for
port wise mobility), IPsec,,,

Static NAT and Dynamic NAT

• Static NAT
– assign fixed port # range to each terminal

• with enough (hundreds?) # or port, should be
sufficient

• Dynamic NAT
– each terminal request NAT GW port #

• port assignment state in NAT GWs may be updated
actively involving terminals

– no guess by timeout necessary, multiple GWs may be
synchronized

Difference between Static
E2ENAT and Port Forwarding

• port forwarding of legacy NAT
– some port is statically assigned to some host

• transport layer relaying by legacy NAT

• can operate as servers?
– not actually transparent for some applications

• Static E2ENAT
– fully E2E transparent

End to End NAT and
Port Numbers

• non default port number may be specified
by URLs or DNS SRV RRs

• E2ENAT works almost in IP layer
– except for source port # outside of IP header

• with pure transport protocols, 16 bit next to IP
header is source port # and 16 bit destination port #
follows

– format of ICMP for packet errors
• (64B ICMP header)+(IP header and 64 bits after the

header of packets casing the error)
– 64 bits should contain something like port#

SRV RR (rfc2782)

• similar to MX for applications in general
– Name TTL Class MX

Priority Target

– _Service._Proto.Name TTL Class SRV

Priority Weight Port Target
• Weight and Port number may be specified

– _http._tcp.www.example.com SRV

0 1 9 server.example.com.

End to End NAT and ICMP

• basically interoperate as is
– strictly speaking, reverse address translation of

inner IP header necessary
• for ICMP error generated in private network to

public Internet

• port # of ICMP packets?
– ICMP error

• inner src as dst, dst as src

– ICMP Echo etc.
• regard ID as src and seqno as dst

End to End NAT and ICMP Error

• ICMP error is translated based on source
port # of inner IP packet

• ICMP Host Unreachable
– affect other hosts sharing public address

– as it is a soft error, not a serious problem
• TCP connection won’t reset

• shouldn’t be intelligently translated to port
unreachable, because it is a hard error

Address Translation within ICMP

end
NAT
GW

router

translated dst address

translated dst address of inner
packet

ICMP errorstrictly speaking, reverse
translation is necessary
(traceroute worked without it)

End to End NAT and
ping/traceroute

• want to make ping/traceroute work
– use port #s assigned to a host as ID (source

port#)

– extend to be able to specify seqno (dst port #)
• ping ... host[:dstport[,incr[,count]]]

• traceroute ... [-p port[.incr]] ... host ...

• assume each host is assigned port, port+incr,
port+incr*2,,,

End to End NAT and ICMP Echo

• ICMP echo request regards:
– ID as src port# and seq# as dst port #

• restrict ID and address translation by seq#

• ICMP echo reply, conversely, regards:
– ID as dst port# and seq# as src port #

• ID and seq# is copied from those of request

End to End NAT and IPsec

• both AH and ESP has 32 bit SPI within 8B
after IP header

• if first 16 bit of SPI is specified by src and
last 16 bit of SPI is specified by dst
– may be used as src and dst port numbers

AH (Authentication Header)
(rfc2402)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Next Header | Payload Len | RESERVED |

+-+

| Security Parameters Index (SPI) |

+-+

| Sequence Number Field |

+-+

| |

+ Authentication Data (variable) |

| |

+-+

ESP (Encapsulating Security
Payload) (rfc2406)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+ ----

| Security Parameters Index (SPI) | ^Auth.

+-+ |Cov-

| Sequence Number | |erage

+-+ | ----

| Payload Data* (variable) | | ^

~ ~ | |

| | |Conf.

+ +-+ |Cov-

| | Padding (0-255 bytes) | |erage*

+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |

| | Pad Length | Next Header | v v

+-+ ------

| Authentication Data (variable) |

~ ~

| |

+-+

End to End NAT and Application
Relays

• with DNS, SMTP, HTTP, request may be
received by default port and multiplexed by
information (domainname etc.) in request
– port# may not be specified by http URL

– port# of DNS and SMTP is implied by NS and
MX and cannot be changed

• multiplexing by application relays necessary, if
servers must be placed in private IP network

End to End NAT and Source
Address Used by End Host

• end host host knows its public and private
IP addresses
– packet destined to private network use private

address as source address

– other packets use public address as source
address

– packets destined to its own public address
should be output unless destination port # is not
ones assigned to it

End to End NAT and Legacy
Terminals

• legacy terminals in private IP network
behind E2ENAT GW
– may use DHCP

• though cannot recognize NAT information

• packets from legacy terminals
– may be treated by E2ENAT GW as legacy NAT

• distinguished by source address is private or public

Nesting End to End NAT

• E2ENAT GWs may be nested

• subscriber statically assigned many
(hundreds of) port #s from ISP
– may use some statically by servers

– others may be assigned to inner E2ENAT GW
• to be dynamically shared by hosts in inner private IP

network

End to End NAT and DNS
Revers Lookup

• shared address may be looked up as usual
www.example.com A 208.77.188.166

166.188.77.208.in-addr.arpa PTR www.example.com

• port# wise reverse lookup as follows
p1.example.org CNAME www.example.com

1.0. 166.188.77.208.in-addr.arpa PTR p1.example.org

p2.example.org CNAME www.example.com

2.0. 166.188.77.208.in-addr.arpa PTR p2.example.org
– though PTR referring CNAME is superficial violation of

rfc1034, it will not cause problems

End to End NAT and Multicast

• multicast address should be common and
globally unique in public internet and
private IP network

• as some multicast routing protocols use
source address for routing, multicast packet
should be sourced by NATGW
– hosts in private IP network should use unicast

IP over IP to NATGW
• PIM (protocol independent multicast) already has

mechanism to do so

End to End NAT and Mobility

• if home address/port is behind NAT GW
– MH knows (static) NAT information of home

– HA may relay communication between MH and
home NAT GW

• if MH is behind foreign NAT GW
– port number range of foreign and home

addresses, in general, different

– tunnel from HA to MH should be IP over UDP
over IP

• only one port # necessary at foreign network

E2ENAT and PR-IP
(Port Restricted IP)

IPv4
Backbone

PR-IP
GW

PR-IP
Host

port
depen

den
t

packet
delivery

PR-IP
Host

PR-IP
Host

PR-IP
Host

source port numbers
must be restricted

PR-IP with A+P (Address+Port)

IPv4
Backbone

PR-IP
GW

PR-IP
Host

PR-IP
Host

PR-IP
Host

PR-IP
Host

Delivery is over P2P links chosen
by PR-IP GW

point to point links

P2P link is chosen
depending on port numbers

PR-IP with Port Enhanced ARP

IPv4
Backbone

PR-IP
GW

PR-IP
Host

PR-IP
Host

PR-IP
Host

PR-IP
Host

Delivery is by MAC address returned
by PR-IP host through PE-ARP

a link segment with
enhanced ARP

reply ARP with
port numbers
of PR-IP host

ARP request include
port numbers

PR-IP with End to End NAT

IPv4
Backbone

PR-IP
GW

PR-IP
Host

PR-IP
Host

PR-IP
Host

PR-IP
Host

Delivery is by private IP addresses
translated by PR-IP GW

Private
IPv4

Network

private address is
chosen depending
on port numbers

translated addresses
are translated back
by PR-IP hosts

no port translations nor
transport checksum

recalculations

Implementation

• based on NetBSD5.1 with static NAT only

• essential modifications
– for forward and reverse address translation

• several lines to ip_input.c of hosts

• several tens of lines to ip_input.c of GW

– to restrict source address and port#
• several hundreds of lines to in_pcb.c of hosts and

GW

• several lines to ip_output.c of hosts and GW
– disable transport checksum computation by NIC card

Demonstration Environment for
End to End NAT

• may use ssh (guest, guest)
– port numbers 100, 150,100 to e1, e2, e3

public internet
|

--------+--------------+------------------+------
| 131.112.32.141 | 131.112.32.142

enatg1 enatg2
| 192.168.1.1 | 192.168.1.1

--+-----+----------------+------- ---+---
| 192.168.1.2 | 192.168.1.3 | 192.168.1.2

enate1 e2enatgwp enate3
(port 100, 200, ..., | 192.168.2.1 (port 100, 200, ...,

of 131.112.32.141) ---+--- of 131.112.32.142)
| 192.168.2.2

enate2 (port 150, 250, 350, ..,
of 131.112.32.142)

End to End NAT and
Fragmentation

• with IP fragmentation
– ID should be unique within lifetime of packet

• ID individually assigned by hosts may collide

• may be remedies by transport checksum
– 16bit ID is not enough even for unshared

address, anyway
• wrap around occurs @ 13Mbps with 1500B packets

if lifetime is 60s

End to End NAT and Address
Allocation

• E2ENAT can save addresses a lot

• should be assumed for address allocation
– makes IPv6 unnecessary

– makes remembering address human
• remembering IPv6 address is divine

• class E address should also be used
– in a long run

End to End NAT and Class E
Address

• Class E address is currently abandoned
– not so many addresses for elaboration

• if address saving by E2ENAT is assumed
– may use class E for unicast, after transition

period
• as hosts must be modified for E2ENAT

– modifications for class E may be performed at the same
time

• routers must also be modified
– a lot easier than adopting to IPv6

End to End NAT and Prefix in
Global Routing Table

• entries finer than /24 in global routing
table?
– /24 means 16M entries (usually too much)

• IPv6 failed to suppress # of entries
– a lot more than 16M possible

• in a long run
– end to end multihoming MUST be deployed

End to End NAT and End Users

• by introducing end to end NAT, end users
– may operate servers and clients as is

– no IPv6 necessary
• address (and port) is easy to remember

– port # specification by URLs for http not
necessary

– must modify hosts, if legacy NAT is not enough
• no worse than keep using legacy NAT

TCP and UDP with Port Length
Enhancement (TUPLE)

-- A Scribbled Slate Approach for Internet Addressing and Routing --

Masataka Ohta

Tokyo Institute of Technology

mohta@necom830.hpcl.titech.ac.jp

TUPLE
(TCP and UDP with Port Length Enhancement)

-- A Scribbled Slate Approach for Internet Addressing and Routing --

• TCP and UDP with 6B port numbers
– and extended transport option field

• length of “Data Offset” field of TCP is extended

• unused UDP “Length” field is used as “Data Offset”

• the option field may contain alternative source
addresses for better aggregation

• Named after TUBA (was an IPng candidate)
– “TCP and UDP with Bigger Addresses (TUBA), A Simple

Proposal for Internet Addressing and Routing” (RFC1347)

– Port numbers of other protocols may also be enhanced

Header Format of the Current
TCP

SRC port DST port

Flags &
Reserved bits

Sequence Number

Acknowledgment Number

Data
Offset

Window

Checksum Urgent Pointer

Options & Padding
(at most 40B long)

Header Format of TUPLE TCP
SRC port H DST port H

SRC port M DST port M

SRC port L DST port L

Flags &
Reserved

Sequence Number

Acknowledgment Number

Data
Offset

Window

Checksum Urgent Pointer

Options & Padding
(at most 972B long)

Header Format of the Current
UDP

SRC port DST port

Length Checksum

Not necessary

Header Format of TUPLE UDP
SRC port H DST port H

SRC port M DST port M

SRC port L DST port L

ReservedData
Offset

Checksum

Options & Padding
(at most 1004B long)

Packet Format of the Current
ICMP ECHO Request & Reply

Type Checksum

Identifier Sequence Number

IP Header

Code

Data (variable length)

Packet Format of TUPLE
ICMP ECHO Request

Type (8) Checksum

SRC port H DST port H

IP Header

Code

Remaining Data (variable length)

SRC port M DST port M

SRC port L DST port L

Packet Format of TUPLE
ICMP ECHO Reply

Type (0) Checksum

DST port H SRC port H

IP Header

Code

Remaining Data (variable length)

DST port M SRC port M

DST port L SRC port L

Almost End to End NAT

Masataka Ohta

Layering Structure of Legacy
NAT

public IP

datalink

private IP private IP private IP private IP

NAT
unaware

public
application

datalink

: public Internet : private IP network

bi-directional translation of address, port and
check sum

private
transport

public
transport

private
transport

End to End NAT

• NAT function offered by end systems
– do almost nothing on NAT GW

• translate destination IP address of incoming packets
– keep port # and transport checksum as is

– end systems restore destination address
• transport checksum is correct

– use global source address and restrict source
port # to those assigned to end system

• no port # collision at NAT GW
– no port # translation necessary

Layering Structure of End to End
NAT

public IP

datalink

private IP private IP private IP private IP

public
transport

public
application

datalink

: public Internet : private IP network

destination address translation of incoming
packets based on destination port #

public IP

address restoration of incoming packets

private
transport

public
transport

port # restriction of outgoing packets

Properties of End to End NAT

• All the existing transport protocols work
– as long as port # or something like that exists

• may regard ID and seq # of ICMP and SPI of IPsec
as port $#

• deployment is not easy
– NAT GW must be modified

• though backward compatible

– needs some protocol (DHCP? PPP? PCP?)
modifications to offer NAT information to end
systems

UPnP (Universal Plug and Play)

• protocol to autoconfigure hosts
– include port mapping information of NAT

• specifications on WANIPConnection service

– assume applications on hosts modified to be
UPnP capable

• implemented on most, if not all, NAT GWs

• only transport layers of TCP and UDP (and
ICMP) are supported

Layering Structure of Legacy
NAT

public IP

datalink

private IP private IP private IP private IP

NAT
unaware

public
application

datalink

: public Internet : private IP network

bi-directional translation of address, port and
check sum

private
transport

public
transport

private
transport

Layering Structure Assumed by
UPnP

public IP

datalink

private IP private IP private IP private IP

NAT
aware
private

application

datalink

: public Internet : private IP network

bi-directional translation of address, port and
check sum

private
transport

public
transport

private
transport

communication to
traverse NAT

UPnP

UPnP and
End to End Argument

• UPnP is literally
– with the knowledge and help of the application

standing at the end points of the communication

but application-wise adoption to NAT needs
modifications to all applications

• “application” in E2E Argument dose not
mean application layer today
– protocol stack at that time was not well layered

– adoption may be done at lower layer

Almost End to End NAT

• UPnP GW combined with End to End NAT

• reverse translation of port mapping by
UPnP GW by transport layer of hosts

• no modification necessary on applications
– though port # range is restricted

– “almost” because only TCP, UDP and ICMP are
supported

Layering Structure of Almost
End to End NAT

public IP

datalink

private IP private IP private IP private IP

private
transport

public
application

datalink

: public Internet : private IP network

bi-directional translation of address, port and
check sum

public
transport

bi-directional reverse translation of address, port
and check sum

restriction on source port # of outgoing
packets

private
transport

public
transport

UPnP

configuration info

Properties of Almost End to End
NAT

• can use UPnP capable existing NAT GW as is

• NAT configuration information is
announced by UPnP
– global address: GetExternalIPAddress()

– port translation: GetListOfPortMappings()
• GetGenericPortMappingEntry() for UPnP1.0

• host modification base on E2ENAT for
NetBSD5.1 is trivially easy
– unless port #s are not translated on NAT GWs

• no reason to do so

Port Number Shortage by NAT?

• some applications on clients needs large #
of ports?
– google map, for example

– is not a problem of proper implementation
• implementations (incl. google map) must take care

of temporary shortage of port #s (was not detectable
with legacy NAT, EAGAIN with (almost) E2ENAT)

• source port of client may be shared by many
connect(), of REUSEPORT is set with setsockopt()

– connect(), after binding socket to shared port

Conclusion

• Almost End to End NAT enables
– UPnP unaware applications over TCP/UDP on

hosts behind UPnP capable NAT GW works as
is keeping full E2E transparency

– price increase of IPv4 addresses motivate
deployment

• address space of IPv4 will last forever?
– especially with class E

• support for DNS SRV RR by browsers necessary

Wrap-up

• E2ENAT save IPv4 address a lot, keeping
almost all properties (including E2E
transparency) of the Internet today

• address allocation assuming E2ENAT
makes IPv4 address space (incl. class E) last
forever

• who needs poor IPv6?

