Memory Hierarchies

prepared and Instructed by

Shmuel Wimer
Eng. Faculty, Bar-llan University

COMPUTER COMPUTER ARCHITECTURE
ORGANIZATION

AND DESIGN

(AT
:
E*.-__
A
=
-

DAVID A. PATTERSON
JOHN L.HENNESSY

e
>
{
e
DR g
£

Amdahl’s Law

Speedup: How much faster a task will run on the
computer with an enhancement, compared to the
original computer.

Amdahl’s Law: The performance improvement
gained from using a faster mode of execution is
limited by the fraction of the time the faster mode
can be used.

Cashes 2

[|
Principle of Locality

 Temporal locality (locality in time): If an item is
referenced, it will tend to be referenced again soon.

e Spatial locality (locality in space): If an item is
referenced, items whose addresses are close will
tend to be referenced soon.

* locality in programs
— loops - temporal

— instructions are usually accessed sequentially - spatial
— Data access of array - spatial

Cashes 3

N

Memory Hierarchy

C Memory
CPU a bus /O bus :
: c Memory I/O devices
| Registers | h
- :
Disk
memory
Register Cache Memory reference
reference reference reference /
Level 1 2 3 4
Name registers cache main memory disk storage

Cashes 4

Memory Hierarchy

* The memory system is organized as a hierarchy
— A level closer to the processor is a subset of any level further away.
— All the data is stored at the lowest level.

Current

Speed CPU Size Cost ($/bit) Technology

Fastest Memory Smallest Highest SRAM
Memory DRAM

Slowest Memory Biggest Lowest Magnetic Disk

* Hierarchical implementation makes the illusion of a memory
size as the largest, but can be accessed as the fastest.

Cashes 5

Hit and Miss

Processor .)
* |In a pair of levels one is

I upper and one is lower.
L] e The unit within each level

is called a block.

A

Data are transferred e We transfer an entire
Y

block when we copy
something between levels.

Hit rate, or hit ratio, is the fraction of memory accesses
found in the upper level. Miss rate = 1 — hit rate.

Cashes 6

Hit time: the time required to access a level of the

memory hierarchy.
 |ncludes the time needed to determine whether hit or miss.

Miss penalty: the time required to fetch a block into

the memory hierarchy from the lower level.
* Includes the time to access the block, transmit it from the
lower level, and insert it in the upper level.

The memory system affects many other aspects of a

computer:

* How the operating system manages memory and |/O
* How compilers generate code

 How applications use the computer

Cashes

CPU

Increasing distance
from the CPU in

access time
Levels in the / Level 2 \
memory hierarchy
/ Level n \
Y

_—
-

Level 1

[
|

Size of the memory at each level

This structure allows the processor to have an access time
that is determined primarily by level 1 of the hierarchy and
yet have a memory as large as level n.

Cashes 8

Requesting data from the cache

The processor requests a word X,, that is not in the cache

Before reference to X, After reference to X,
X, X,
X X
Xp-2 Xp-2
Xn-1 Xn-1
X, X,
X
X3 X3

Two questions :
e How do we know if a data item is in the cache?
e |fitis, how do we find it?

Cashes

Direct-Mapped Cache

Each memory location is mapped to one cache location

Mapping between addresses and cache locations:

(Block address in Mem) % (# of blocks in cache)

Modulo is computed by using log,(cache size in blocks) LSBs
of the address.

The cache is accessed directly with the LSBs of the requested
memory address.

Problem: this is a many-to-one mapping.

A tag field in a table containing the MSBs to identify whether
the block in the hierarchy corresponds to a requested word.

Cashes 10

Cache

000
001
010
011
100
101
110
111

Mem address mod 8 = 101
Mem address mod 8 = 001
tag

>><<\

00001 00101 01001 01101 10001 10101 11001 11101

Memory

Cashes 11

Address

11...
11...
11...
11...
...11101100
...11101000
...11100100
...11100000

888838388888

11111100
11111000
11110100
11110000

..00100100
..00100000
..00011100
..00011000
..00010100
..00010000
..00001100
..00001000
..00000100
..00000000

Data

mem[OxFFFFFFFC]

mem|[0xFFFFFFF8]

mem[OXFFFFFFFA] Mapping 232 bytes

mem|[0xFFFFFFFO] .

mem[OxFFFFFFEC] main memory to a 23

mem[OxFFFFFFES] .

S — words direct mapped

mem[OxFFFFFFEQ] cache.

mem[0x00000024]

mem|[0x00000020]

mem[0x0000001C] Set 7 (111)

mem[0x00000018] Set 6 (110)

mem[0x00000014] Set 5 (101)

mem[0x00000010] Set 4 (100)

mem[0x0000000C] Set 3 (011)

mem[0x00000008] Set 2 (010)

mem[0x00000004] Set 1 (001)

mem[0x00000000] > Set 0 (000)
2%%-Word Main Memory 23-Word Cache

Cashes

12

Some of the cache entries may still be empty.

We need to know that the tag should be ignored for
such entries.

We add a valid bit to indicate whether an entry
contains a valid address.

Cashes 13

Cache Access Sequence

assigned

22 10110, miss (7.6b) (101104, mod 8) = 110,,,
26 11010, miss (7.6c) (110104, mod 8) = 0104,
22 10110, hit (10110,,, mod 8) = 1104,
26 11010y, hit (110104, mod 8) = 010y,

miss (7.6d)

(100004, mod 8) =

000y,

miss (7.6e)

(000114, mod 8) =

0110

18

hit

(10000

mod 8) =

000
0100

10010,,, miss (7.6f) (10010, mod 8) =
[l v [o ____
Memory (10000,,,,)
001 N
010 Y 10,0 Memory (10010,,,,)
011 Y 00,0 Memory (00011,,,)
100 N
101 N
110 Y 100 Memory (10110,,,)
111 N

Cashes

14

Hit

Address (showing bit positions)

Data

3130 --- 131211---2 10
Byte
offset
420 J10
Tag B
Index
Index Valid Tag Data
0
1
2
- ™ ™
1021
1022
1023
420 4.32
(=
Cashes

Referenced address
is divided into

e a cache index,

used to select
the block

e a tag field,
compared with
the value of the
tag field of the
cache

15

Cache Size

The cache includes both the storage for the data and the tags.
The size of the block is normally several words.

For 32-bit byte address, a direct-mapped cache of 2™ blocks
size with 2™ words (2™%2 bytes) in a block, will require a tag
field which size is 32 — (n + m + 2) bits.

The total number of bits in a direct-mapped cache is
therefore 2™ x (block size + tag size + valid field size).

Since the block size is 2™ 32-bit words (2™*° bits), and the
address size is 32 bits, the number of bits in a direct-mapped
cacheis 2" X [2M™*> + (32 —n—-m—2) + 1] =

2" x (2M*5 + 31 —n—m)

The convention is to count only the size of the data.

Example: How many total bits are required for a direct-mapped
cache with 16 KB of data and 4-word blocks, assuming a 32-bit
address?

16 KB is 4K words, which is 214 words, and, with a block size of 4
words (22), there are 21 blocks.

Each block has 4 x 32 = 128 bits of data, plusatagof32-10-2 -
2 bits, plus a valid bit. The total cache size is therefore

210 % (128 +(32-10-2-2)+1) = 147 Kbits = 18.4 KB

For a 16 KB cache it is about 1.15 times as many as needed just
for data storage.

Cashes 17

Example: Find the cache block location that byte 1200 in Mem
maps to, in a 64-blocks cache with 16-byte block size.

Cache block locations
=(Mem block address)%(#blocks in cache)

Mem block address = [Mem byte address/bytes per block| =
11200/16] = 75
Block address contains all the bytes in range

From: [Mem byte address/bytes per block| X bytes per block
=75%x16 =1200

To: (|Mem byte address/bytes per block] + 1) X bytes per
block —1 =76 x16—-1 = 1215

It maps to cache block number (75 % 64) = 11, containing all
bytes addresses between 1200 and 1215.

[|
Block Size Implications

Larger blocks exploit spatial locality to lower miss
rates.

Block increase will eventually increase miss rate

Spatial locality among the words in a block decreases
with a very large block.

— The number of blocks held in the cache will become small.
— There will be a big competition for those blocks.

— A block will be thrown out of the cache before most of its
words are accessed.

10%

Miss 5%
rate

0%

Miss rate versus block size

ooo

/

ooo

Block size

Cashes

-
(\
A . e o 64K
—h—
| —4 A * 256K
16 32 64 128 256

20

A more serious issue in block size increase is the

increase of miss cost.
* Determined by the time required to fetch the block and
load it into the cache.

Fetch time has two parts:
* the latency to the first word, and
* the transfer time for the rest of the block.

Transfer time (miss penalty) increases as the block
Size grows.

The increase in the miss penalty overwhelms the
decrease in the miss rate for large blocks, thus
decreasing cache performance.

* Shortening transfer time is possible by early restart,
resuming execution once the word is returned.

— Useful for instruction, that are largely sequential.
— Requires that the memory delivers a word per cycle.

— Less effective for data caches. High probability that a word
from different block will be requested soon.

— If the processor cannot access the data cache because a
transfer is ongoing, it must stall.
 Requested word first

— starting with the address of the requested word and
wrapping around.

— Slightly faster than early restart.

Cashes 22

[|
Handling Cache Misses

Modifying the control of a processor to handle a hit is
simple.

Misses require extra work done with the processor’s
control unit and a separate controller.

Cache miss creates a stall by freezing the contents of
the pipeline and programmer-visible registers, while
waiting for memory.

Cashes 23

Steps taken on an instruction cache miss:

1.
2.

Send to the memory the original PC value.

Instruct main memory to perform a read and wait for the
memory to complete its access.

Write the cache entry: memory’s data in the entry’s data
portion, upper bits of the address into the tag field, turn
the valid bit on.

Restart the instruction execution at the first step, which
will re-fetch the instruction, this time finding it in the
cache.

The control of the data cache is similar: miss stalls the
processor until the memory responds with the data.

Cashes 24

Handling Writes

After a hit writes into the cache, memory has a different value
than the cache. Memory is inconsistent.

We can always write the data into both the memory and the
cache, a scheme called write-through.

Write miss first fetches block from memory. After it is placed
into cache, we overwrite the word that caused the miss into
the cache block and also write it to the main memory.

Write-through is simple but has bad performance. Write is
done both to cache and memory, taking many clock cycles (e.g.
100).

If 10% of the instructions are stores and the CPIl without misses
was 1.0, new CPlis 1.0+ 100 x 10% = 11, a 10x slowdown!

Cashes 25

Speeding Up

A write buffer is a queue holding data waiting to be written to
memory, so the processor can continue working. When a write
to memory completes, the entry in the queue is freed.

If the queue is full when the processor reaches a write, it must
stall until there is an empty position in the queue.

An alternative to write-through is write-back. At write, the
new value is written only to the cache. The modified block is
written to the main memory when it is replaced.

Write-back improves performance when processor generates
writes faster than the writes can be handled by main memory.
Implementation is more complex than write-through.

Cashes 26

4,
N
Cache Example (Data and Instruction)

Miss sends the address to
memory. Returned data is Address (showing bit positions)

5 . . ress (showing bit positions
written into the.cache andis L ae o0
then read to fulfill request.

instruction cache: from PC
data cache: from ALU

Hit 418 J8 44 Byte Data
A Tag offset
Index Block offset
18 bits 512 bits .
V Tag Data
Instruction miss rate Data miss rate Effective combined miss rate
0.4% 11.4% 3.2%
1 1 Ja2 J32 J32
e . } l L\‘
Hit selects by M)
offset the word 122
from the block
27

[|
Main Memory Design Considerations

Cache misses are satisfied from DRAM main memory, designed
for density rather than access time.

Miss penalty can be reduced by increasing bandwidth from the
memory to the cache.

Bus clock rate is 10x slower than processor, affecting the miss

penalty. Assume

* 1 memory bus clock cycle to send the address

* 15 memory bus clock cycles for each DRAM access initiated
* 1 memory bus clock cycle to send a word of data

For a cache block of 4 words and a one-word-wide bank of
DRAM, miss penalty =14+ 4 X 154+ 4 X 1 = 65 memory bus
clock cycles.

Bytes transferred per bus clock cycle = (4 X 4)/65 = 0.25.

CPU

Cache

Bus

Memory

a. One-word-wide

Miss penalty =1+ 1 X 15+ 1 = 17 cycles. Bytes
transferred per cycle = (4 X 4)/17 = 0.94. Wide
bus (area) and MUX (latency) are expensive.

Misspenalty =14+ 1Xx154+4 X1 =20 cycles.

memory organization Bytes transferred per cycle = 0.8.

Cashes 29

Cache Performance

Two techniques to reduce miss rate:

* Reducing the probability that two different
memory blocks will contend for the same cache
location by associativity.

 Adding a level to the hierarchy, called multilevel
caching.

Cashes 30

CPU Time

CPU time = (CPU execution clock cycles + Memory-
stall clock cycles) x Clock cycle time

Memory-stall clock cycles = Read-stall cycles + Write-
stall cycles

Read-stall cycles = Reads/Program x Read miss rate x
Read miss penalty

Write-stall cycles = Writes/Program x Write miss rate
X Write miss penalty + Write buffer stall cycles (write-
through)

Write buffer term is complex. It can be ignored for buffer
depth > 4 words, and a memory capable of accepting writes at
> 2x rate than the average write frequency.

Cashes 31

Write-back also has additional stalls arising from the
need to write a cache block back to memory when it is
replaced.

Write-through has about the same read and write miss
penalties (fetch time of block from memory). Ignoring
the write buffer stalls, the miss penalty is:
Memory-stall clock cycles (simplified) =

Memory accesses/Program x Miss rate x Miss penalty =

Instructions/Program x Misses/Instruction x Miss
penalty

Cashes 32

Example: impact of an ideal cache

A program is running I instructions. 2% instruction
cache miss, 4% data cache miss, 2 CPl without any
memory stalls, and 100 cycles penalty for all misses.

How faster is a processor with a never missed cache?
Instruction miss cycles=1 X 2% X 100 = 2.0 X |

With 36% loads and stores,
Data miss cycles =1 X 36% X 4% X 100 =1.44 X |

CPI with memory stalls=2 + 2 + 1.44 = 5.44
Speedup= CPlgt,)) /CPlye foct = 5-44/2 = 2.77

Example: Accelerating processor but not memory.
Memory stalls time fraction is increased.

CPl reduced from 2 to 1 (e.g. deeper pipeline), system
with cache misses have CPI =14+ 3.44 =4.44.
System with perfect cache is 4.44/1 = 4.44 faster.

The execution time spent on memory stalls increases
from 3.44/5.44 = 63% to 3.44/4.44 = 77%. ®

Processor’s clock cycle reduced by 2x, but memory
bus not, CPlga =2+ 2% X200+ 36% X 4%
X 200 = 8.88

Perfqow/Perfraer = 5.44/(8.88 x 1/2) = 1.22
rather than 2x. ®

Relative cache penalties increase as a processor
becomes faster.

If a processor improves both CPl and clock rate

 The smaller the CPI, the more impact of stall cycles is.

* |f the main memories of two processors have the same
absolute access times, higher processor’s clock rate leads to
larger miss penalty.

The importance of cache performance for processors
with small CPIl and faster clock is greater.

Cashes 35

[|
Reducing Cache Misses

Direct map scheme places a block in a unique location.

Fully associative scheme places a block in any location.
* All cache’s entries must be searched.

* Expensive: done in parallel with a comparator for each entry.
* Practical only for caches with a small number of blocks.

A middle solution is called n-way set-associative map.

* Fixed number (n) of locations where a block can be placed.

A number of sets, each of which consists of n blocks.

* A memory block maps to a unique set in the cache given by
the index field. A block is placed in any element of that set.

Cashes 36

Cache

Block frame address

Block 1
no. 01234567890

Memory

Cashes 37

One-way set assoclative
(direct mapped)

Block Tag Data

0

; Two-way set assoclative Four-way set assoclative

> Set Tag Data Tag Data Set Tag Data Tag Data Tag Data Tag Data
4 0 0

4 1 1

- 2

6 3

7

Eight-way set assoclative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Cache size (blocks) = number of sets x associativity.

For fixed cache size, increasing the associativity
decreases the number of sets.

Cashes 38

Example: Misses and associativity in caches.

Three caches of 4 1-word blocks, fully associative, two-way set
associative, and direct mapped.

For the sequence of block addresses: 0, 8, O, 6, 8, what is the
number of misses for each cache?

direct mapped

0 (O modulo 4) =0
. 6 (6 modulo 4) =2
5 misses 8 (8 modulo 4) = 0

Address of memory Hit Contents of cache blocks after reference
blockacsessed |ermiss| o | 2 | 2 | 3
@ Memory[O

0 0]

8 miss Memory[8]

0 miss Memory[O]

6 miss Memory[O] Memory[6]

8 miss Memory[8 Memory[6
\\miss/ ry[8] y[6]

Cashes 39

two-way set associative

Address of memory
block accessed

0 (O modulo 2) =0
6 (6 modulo 2) =0
8 (8 modulo 2) =0

Contents of cache blocks after reference

0 mm?\ Memory[O

8 miss Memory[O] Memory[8]

0 hit Memory[O] Memory[8]

6 /ﬁ‘IIETE\ Memory[O] Memory[6]

8 \niss /| Memony[8] | Memory[6]
4 misses

fully associative

Contents of cache blocks after reference

o e e

Address of memory
block accessed
0

miss Memory[O]
8 miss Memory[O] Memory[8]
0 hit Memory[O] Memory[8]
_p—
6 < miss) Memory[O] Memory[8] Memory[6]
8 hit Memory[O] Memory[8] Memory[6]
3 misses .

Ny

40

Ny
Size and associativity are dependent in determining cache
performance.

For 8 blocks in the cache, there are no replacements in the
two-way set-associative cache. (why?)

There are same number of misses as the fully associative cache.

For 16 blocks, all three caches would have the same number of
misses.

Benchmarks of a 64 KB data cache with a 16-word block

Associativity Data miss rate

1 10.3%
2 8.6%
4 8.3%
8 8.1%

Cashes 41

[/
Four-way set-associative cache

Address
3130---12111098---3210 1-word block
122 Is 4-block set
Tag B)
Index
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
—Jo[¢ | ¢ | el e[o | (ol e ¢ | (e 9| ¢ | set
253
254
255
d22 32
P, 9, "~ [~
= parallel

MUX with a éggi -
4-to-1 multiplexor
decoded)

select signal l
Hit Data

Cashes 42

Locating a Block in the Cache

Tag

Index

Block Offset

Set is found by the index. Tag of a block within the
appropriate set is checked for matching. Block offset
is the address of the word within the block.

For speed all the tags in a set are searched in parallel.

In a fully associative cache, we search the entire

cache without any indexing. Huge HW overhead.

The choice among direct-mapped, set-associative, or
fully associative depends on the miss (performance)

cost versus HW cost (power, area).

Example: Size of tags versus set associativity

Given cache of 4K=212 blocks, a 4-word block size,
and a 32-bit address. What is the total number of

sets tag bits?

There are 16=2% bytes / block. 32-bit address yields
32-4 =28 bits for index and tag.

Direct-mapped cache has 12=log,(4K) bits of index.
Tag is 28-12=16 bits, yielding a total of 16 x 4K = 64

Kbits of tags.

For a 2-way set-associative cache, there are
2K = 211 sets, and the total number of tag bits is
(28 - 11) x 2 x 2K =34 x 2K = 68 Kbits.

For a 4-way set-associative cache, there are
1K = 210 sets, and the total number of tag bits is
(28 -10) x4 x 1K =72 x 1K = 72 Kbits.

Fully associative cache has one set with 4K
blocks, and the total number of tag bits is
28 x 4K x 1 = 112K bits.

Cashes 45

[|
Which Block to Replace?

In a direct-mapped cache the requested block can go
in exactly one position.

In a set-associative cache, we must choose among the
blocks in the selected set.

The most commonly used scheme is least recently
used (LRU), where the block replaced is the one that
has been unused for the longest time.

For a two-way set-associative cache, tracking when
the two elements were used can be implemented by
keeping a single bit in each set.

As associativity increases, implementing LRU gets
harder.

Random

* Spreads allocation uniformly.

* Blocks are randomly selected.

 System generates pseudorandom block numbers to get
reproducible behavior (useful for HW debug).

First in, first out (FIFO) Because LRU can be
complicated to calculate, this approximates LRU by
determining the oldest block rather than the LRU.

Cashes 47

Multilevel Caches

Used to reduce miss penalty.

Many pP support a 2"-level (L2) cache, which can be
on the same die or in separate SRAMs (old days).

L2 is accessed whenever a miss occurs in L1.

If L2 contains the desired data, the miss penalty for
L1 is the access time of L2, much less than the access
time of main memory.

If neither L1 nor L2 contains the data, main memory
access is required, and higher miss penalty incurs.

Example: performance of multilevel caches

Given a 5 GHz processor with a base CPI of 1.0 if all
references hit in the L1.

Main memory access time is 100 ns, including all the
miss handling.

L1 miss rate per instruction is 2%.

How faster the processor is if we add a L2 that has a
5 ns access time for either a hit or a miss, reducing
the miss rate to main memory to 0.5% ?

Miss penalty to main memory (memory-stall):
5GHz x 100 ns = 500 cycles.

The effective CPIl with L1:
Base CPl + Memory-stall cycles per instruction =
1+500x2% =11

The effective CPI with L2:
1+25x%x (2% - 0.5%) + (500 + 25) x 0.5% =4

The processor with L2 is faster by:
11/4=2.8

Cashes 50

n7va MHz 500 271N 7vi19n Tayna |ND'T DDA NN INNAIT
JInun [N2'7 7w NN "My

7v 2910 7T1I2a ,write-through ,direct-mapped 12'n L1-data cache
.8Byte 7w 7172 771121 8KByte

miss-rate .stalls DV QX |'RI D7WIN 17U N2'MDN YXINY D'N'IN
15% 1n'n

4KByte 7w 771D 7TI2a ,direct-mapped 11'n Ll-instruction cache
2% 12'n miss-rate N |IN1 .8Byte 7w 7172 7112l

7715 77122 ,write-back ,2-way set associative ,Qniwni T'n* 110 L2
.10% 11'n miss-rate .32 Byte 7w 2172 77121 2MByte 7w

DN DIYY id L"'0nDim" ni'n L2 2 o'pi7ann 50% yxinna
JYUNRIN [ND'T2 YAD 1D1'RY VTN

?077T1'K7 NIYNWN [IN0NAN NRIND'TA TNX 722 NIFA'o Nnd

L1 Data: 8Kbyte/8Byte = 1024 blocks => 10 bits
L1 Instruction: 4Kbyte/8Byte =512 blocks => 9 bits
L2: 2MByte/32Bytes = 64K blocks = 32K sets => 15 bits

2'WNRIN [IND'T7 VAN [IND'T? 0ININ NIYA NN TINK NT'N
(L1 miss rate) x (L2 miss rate) =0.15 X 0.1 = 1.5%

| (LOAD) nx" 2 [nn 60% ,1No'77 nwa niTpeo ' nimponn 40%
.stalls 7 omnia DX L1 hits .(STORE) narnd [nn 40%

DMy m 20 n'n L2 7 nwna nar

D'7M 190N N1 yvanl ,nw Npm 0.2 ' 'wXIN JNDT? nwnaonrt
N2NNN bus N 2ANN WY TN 7D NIN7W1 memory bus n anNd

1Mo 128 '\ 'wxan [ND'T7 L2 1
Febuary 2014 Cashes 52

[IND'T7 NYWA Ny WATA? NYYY N [IVUN NIThN 19010 NN
707D 1IX'? A¥XN2 UNOINNN D'WYN'RD Q¥ 1NN 2'WUXRIN

Maximum clock cycles occur when L1 missed first, then L2 missed,
then write-back takes place.

L2 access cycles: (20 nSec) / (2 nSec) = 10 cycles
Main memory access cycles: (0.2 uSec) / (2 uSec) = 100 cycles

Block is 32 Bytes and memory bus is 128 bits (16 Bytes), two bus
transactions of 16 Bytes each are required. The first 16 bytes take
100 cycles, the next 16 bytes takes one cycle.

Getting a new block from the memory may evict a block from L2,
which is a write-back. In that case the evicted block must be
written into the memory, requiring a total of L2-memory write-
back 2 x (100 + 1) = 202 cycles.

Febuary 2014 Cashes 53

Summing all
L1 miss + L2 miss + write-back =1 + 10 + 202 = 213 cycles

NITIRS 7710 (AMAT) |IND'T? NW'MA2 YXINAN [IVYUN MITAN 1901 1NN
? DNl

The weight of instruction accesses to memory is 1/(1 + 0.4), while

the weight of data accesses is 0.4/(1 + 0.4). Therefore

AMAT, .., = 1/1.4 AMAT, . + 0.4/1.4 AMAT,.,.

For any 2-level cache system there is

AMAT = (L1 hit time) + (L1 miss rate) x (L2 hit time) + (L1 miss rate)
X (L2 miss rate) x (main memory transfer time).

AMAT must account for the average percentage of L2 dirty blocks,
which for the given L2 means that 50% of the blocks must be

updated in main memory upon L2 miss, yielding a factor of 1.5
multiplying (100 +1).

Febuary 2014 Cashes 54

AMAT, . =1+0.02x10+0.02 x 0.1 x 1.5 x (100 + 1) = 1.503
AMAT, . =1+0.15x 10+ 0.15x 0.1 x 1.5 x (100 + 1) = 4.7725

AMAT, ., = 1/1.4 x 1.503 + 0.4/1.4 x 4.7725 = 2.44

Febuary 2014 Cashes 55

Summary — Four Questions

Q1: Where can a block be placed in the upper level?
(block placement)

Q2: How is a block found if it is in the upper level?
(block identification)

Q3: Which block should be replaced on a miss? (block
replacement)

Q4: What happens on a write? (write strategy)

Cashes 56

