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10.1 AI Trends
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Artificial Intelligence is everywhere
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Example: K-Glass

4https://www.youtube.com/watch?v=fzQpSORKYr8



Intelligence and Deep Learning

5
J. Park, “Deep Neural Network SoC: Bringing deep learning to mobile 
devices,” Deep Neural Network SoC Workshop, 2016.
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Brief History: DNNs
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Accuracy of a DNN
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Why Deep Neural Networks?
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Computational Power and Big Data

9

High performance computation,
big data, and a progress of Algorithms

(Left): “Single-Threaded Integer Performance,” 2016
(Right): Nakahara, “インターネットにおける検索エンジンの技術動向(In Japanese),” 2014



DNN Frameworks

Source by nVidia Corp.

10

Academic…CAFFE, Industry…Tensorflow



CNN Applications
• Image: 
• Classification, Object 

detection, action recognition, 
scene understanding

• Natural Language:
• Speech recognition, 

Translation
• Video:
• Pedestrian detection, traffic 

sign recognition
• Medical:
• Breast cancer cell detection, 

brain image segmentation

2020/8/1
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Application: Object Detection 12



Deep Learning for Embedded System

• Robot, Self-driving, Security Camera, Drone

13



Requirements

14

Cloud Edge

Many classes (1000s) Few classes (<10)
Large workloads Frame rates (15-30 FPS)
High efficiency
(Performance/W)

Low cost & low power
(1W-5W)

Server form factor Custom form factor
J. Freeman (Intel), “FPGA Acceleration in the era of high level design”, 2017



10.2 High performance 
deep neural network
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Computation Requirements for DNNs

• 20 Billion MACs (Multiply ACcumulation operation)/image

16

J. Park, “Deep Neural Network SoC: Bringing deep learning to mobile 
devices,” Deep Neural Network SoC Workshop, 2016.
J. Cong and B. Xiao, “Minimizing computation in convolutional
neural networks,” Artificial Neural Networks and Machine Learning
(ICANN2014), 2014, pp. 281-290.



Artificial Neuron (AN)
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Deep Neural Network
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LeNet-5

• Baseline 5 layer CNN by LeCun
• Convolutional (Feature extraction)
• Fully connection (Classfication)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to 
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 19
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Convolutional Operation
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Convolutional Operation
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Convolutional Operation
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Convolutional Operation
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AlexNet

• ILSVRC’12 Winner (Error rate 16%)
• Augmentation
• 8 layer, dropout, ensemble CNN, rectified linear unit 

(ReLU)

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural 
networks. In Advances in Neural Information Processing Systems 25, pages 1106–1114, 2012. 25



AlexNet vs LeNet-5
LeNet-5, 1998

AlexNet, 2012

#training images: 107

#training images: 1014

26



Augmentation

• Increases # of training data
• Trade off: Memory and error rate

27



GoogLeNet
• Network-in-network
• ILSVRC’14 winner (Error rate 6.7%)
• 22 layer, Inception, no-fully connection

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. 
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, 
Andrew Rabinovich: Going deeper with convolutions. CVPR 2015: 1-9 28



VGG-16
• ILSVRC14 2nd place

(Error rate 7.4%→0.6 point worse)
• All conv. layer has the same kernel size (K=3)
• Variations: VGG11, VGG19

K. Simonyan, A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image 
Recognition,” arXiv:1409.1556 29



30

VGG Strategy: Going Deeper

1st layer 6th layer

• Upper layer → Distinct data
• Deeper CNN improves error rate



The deeper network...

• It has higher training error
• Backward: (0.1)100→0, forward: (1.1)100→∞

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep Residual Learning for Image 
Recognition,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

56-layer CNN
increases error 
rate than 
20-layer one

31



ResNet
• ILSVRC’15 winner (Error rate 3.57%)
• 152 layer, Batch normalization

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep Residual Learning for Image 
Recognition,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 32



Hardware Realization for CNN
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33

…

Pipeline MAC circuit



Hardware Friendly CNN
AlexNet VGG GoogLeNet ResNet

Year 2012 2014 2014 2015

#Layers 8 19 22 152

Accuracy 16.4% 7.3% 6.7% 3.57%

Inception (NinN) --- --- ✔ ---

Kernel Size 11,5,3 3 7,1,3,5 7,1,3,5

FC Size 4096,4096,
1000

4096,4096,
1000

1000 1000

Normalization Local 
Response

--- Local 
Response

Batch

3.5% error improvement vs complex (different) and large HW

→ VGG is suitable
34



Binarized Neural Network

• 2-valued (-1/+1) multiplication
• Realized by an XNOR gate

35
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Binarized CNN by XNORs
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Binarized CNN by XNORs
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1 bit precision → Memory size reduction
XNOR multiplier → Area reduction



Memory Size Reduction by 
Binarization (VGG-11)
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38

Bottleneck



Higher Power Efficiency
• Distance for the memory and ALU∝Power

→ On-chip memory realization

E. Joel et al., “Tutorial on Hardware Architectures for Deep Neural Networks,” MICRO-49, 2016.39



On-chip Memory Realization
• FPGA on-chip memories

• BRAM (Block RAM) → 100s～1,000s
• Distributed RAM (LUT) → 10,000s～100,000s

→ Small size, however, wide band

Cf. Jetson TX1(GPU) LPDDR4, 25.6GB/s

10,000@100MHz → 125GB/s

40
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Error Rate Reduction
• Introduce a batch normalization
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H. Nakahara et al., “A memory-based binarized convolutional deep neural network,”
FPT2016, pp285-288, 2016.
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High-level Synthesis Design  
for the Binarized CNN

42



Design Gap

43

module hoge(
input a, b, c;
output d
);

assign d = (a & b) | c;

endmodule

HDL designer writes
many gates

Y = X.dot(W)+B

Python programmer writes only
a single sentence



#Lines∝Design Time

44

Y = X.dot(W)+B

C/C++: 10 lines

Python: single line

Verilog-HDL: 66 lines



High-Level Synthesis (HLS)

• C/C++ based for the software 
programmer
• 1 week for the NES
• 1 month for the binarized CNN

45



System on Chip FPGA
• Xilinx: Zynq, Intel: Intel SoC

46Source: Xilinx Inc. Zynq-7000 All Programmable SoC

ARM
Cortex A9
Dual Core

Data Storage
by DDR Memory

USB
macro

Re-use
software libraries

by operating
system



Conventional Design Flow  
for the SoC FPGA

47

①

②

④

③

1. Behavior design
2. Profile analysis
3. IP core generation by HLS
4. Bitstream generation by   

FPGA CAD tool
5. Middle ware generation



System Design Tool 
for the SoC FPGA

48

①

②

④

③

1. Behavior design
+ pragmas

2. Profile analysis

3. IP core generation by HLS

4. Bitstream generation by   

FPGA CAD tool

5. Middle ware generation

↓

Automatically done 



A GUI-based binaryzed Neural Network 
Synthesizer (GUINNESS) Tool Flow
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by 
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CNN Weight
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Text
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See, https://github.com/HirokiNakahara/GUINNESS



10.4 Implementation

50



Comparison with Other FPGA Realizations 51

Implementation
(Year)

Zhao et al. [1]
(2017)

FINN [2]
(2017)

Ours

FPGA Board
(FPGA)

Zedboard
(XC7Z020)

PYNQ board
(XC7Z020)

Zedboard
(XC7Z020)

Clock (MHz) 143 166 143

#LUTs
#18Kb BRAMs
#DSP Blocks

46900
94

3

42833
270

32

14509
32

1

Test Error 12.27% 19.90% 18.20%

Time [msec]
(FPS)

5.94
(168)

2.24
(445)

2.37
(420)

Power [W] 4.7 2.5 2.3

FPS/Watt
FPS/LUT
FPS/BRAM

35.7
35.8x10-4

1.8

178.0
103.9x10-4

1.6

182.6
289.4x10-4

13.1

Y. Umuroglu, et al., “FINN: A Framework for Fast, Scalable Binarized Neural Network Inference,” ISFPGA, 2017.
R. Zhao et al., “Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs,” ISFPGA, 2017.



Comparison with Embedded 
Platforms (VGG11 Forwarding)

Platform CPU GPU FPGA

Device

ARM Cortex-A57 Maxwell GPU Zynq7020

Clock Freq. 1.9 GHz 998 MHz 143.78 MHz

Memory 16 GB eMMC Flash 4 GB LPDDR4 4.9 Mb BRAM

Time [msec]
(FPS)

4210.0
(0.23)

27.23
(36.7)

2.37
(421.9)

Power [W] 7 17 2.3

Efficiency 0.032 2.2 182.6

Design Time [Hours] 72 72 75



Conclusion
• DNN design methods for an FPGA
• Binarized DNN → Small hardware with high performance

• With high-level synthesis design
• Short TAT
• Considerable HW consumption

• Comparison with other FPGA based design
• Future works
• Acceleration for the learning
• Detection hyper parameters → Grid search?

53



Final Report
1. (Mandatory) Execute HLS synthesis LeNet5.cpp , and report the 

amount of resources and performance
1. (Optional) Run a C++ simulation by modifying the source code (Note 

that, Vivado HLS report a simulation error due to memory allocation)
2. (Optional) Implement the LeNet5.cpp on the Zybo board (Note, the 

BRAM size exceeds the ZYBO Z-10)

2. (Mandatory) Execute HLS synthesis for a BiQuad filter source 
code (See, 
https://github.com/HirokiNakahara/FPGA_lecture/blob/master/
BiQuad_Filter/BiQuad_Filter.cpp)

1. (Optional) Write a testbench for a BiQuad filter
2. (Optional) Implement a BiQuad filter on the Zybo board
3. (Optional) Optimize a BiQuad filter

3. (Mandatory) Report differences between Xilinx and Intel FPGAs



Final Report Submission

• Submit an PDF file via OCW-i
• Also, back your Zybo board to Nakahara Lab.
• Note that, return to my office administrator 

(Ms. Shimura)
• Room#: S3-402
• She works from AM10:00 to PM16:00 except for 

Wednesday 

Deadline is 17th, Aug., 2020 JST PM 17:00


