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Synthesis Flow
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Related Work: VTR (Verilog-to-
Routing) Project
• Open-source CAD tools for FPGA architecture and CAD 

research
https://github.com/verilog-to-routing/vtr-verilog-to-routing
• Enable the investigation of new FPGA architectures and CAD 

algorithms, which are not possible with closed-source tools
• The VTR design flow takes as input a Verilog description of a 

digital circuit, and a description of the target FPGA 
architecture
• Elaboration & Synthesis (ODIN II)
• Logic Optimization & Technology Mapping (ABC)
• Packing, Placement, Routing & Timing Analysis (VPR)



Technology Mapping
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FlowMap

・Labeling and Cut
・Mapping



Technology Mapping
• Convert a given Boolean netlist into an LUT netlist
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Boolean netlist LUT netlist



FlowMap Process
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FlowMap Process
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FlowMap Algorithm

1) Extract a given Boolean network 
dependent on an output node t
2) Assign the input label to 0
3) Label the node to which the already 
labeled node is input
4) Look for the range that can be covered by 
the k-LUT and place a cut on the input
5) repeat 3) and 4)
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Extract a Single-output Network
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Assign the Input Label to 0
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0 0 0 0 0



Labeling the Index by Topological Order
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0 0 0 0 0

1 1 1

Index = (Max. of above the cut) + 1



Covering by the k-Input LUT (k-LUT)
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0 0 0 0 0

1 1 1

3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=5 and #out=3.



Covering by the k-Input LUT (k-LUT)
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0 0 0 0 0

1 1 1

3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=3 and #out=2.



Covering by the k-Input LUT (k-LUT)
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0 0 0 0 0

1 1 1

3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=2 and #out=1.



Covering by the k-Input LUT (k-LUT)
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3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=4 and #out=2.



Covering by the k-Input LUT (k-LUT)
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0 0 0 0 0

1 1 1

3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=2 and #out=1.



Covering by the k-Input LUT (k-LUT)
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0 0 0 0 0

1 1 1

3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=2 and #out=1.



Labeling
• Calculate the index of the node whose input is the already 

assigned
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0 0 0 0 0

1 1 1
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Covering by the k-Input LUT (k-LUT)
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0 0 0 0 0

1 1 1

1

3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=5 and #out=4.



Covering by the k-Input LUT (k-LUT)
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0 0 0 0 0

1 1 1
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3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=3 and #out=3.



Covering by the k-Input LUT (k-LUT)
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3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=3 and #out=2.



Covering by the k-Input LUT (k-LUT)
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3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=3 and #out=2.



Covering by the k-Input LUT (k-LUT)
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0 0 0 0 0

1 1 1

1

3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=2 and #out=1.



Update Labeling Index
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Covering by the k-Input LUT (k-LUT)
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0 0 0 0 0

1 1 1

1
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3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=4 and #out=3.



Covering by the k-Input LUT (k-LUT)
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1
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3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=3 and #out=1.



Update Labeling Index
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Covering by the k-Input LUT (k-LUT)
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3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=3 and #out=1.



Update Labeling Index
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Covering by the k-Input LUT (k-LUT)
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3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=3 and #out=1.



Update Labeling Index
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Covering by the k-Input LUT (k-LUT)
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0 0 0 0 0

1 1 1

1

2

2

2
2

3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=3 and #out=1.



FlowMap Process
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Boolean netlist DAG

Labeling

Cut

Mapping

LUT netlist



Technology Mapping
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Merge k-LUT Netlists
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Clustering
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1. VPack
2. T-Vpack

• Connection importance

• Total route number impact
3. RPack/t-RPack/iRAC



Clustering

• Goal:  Merge several LUTs into a cluster
• Considerations:
1. Routing outside the cluster has a larger delay penalty than 
in the cluster
2. If there is an empty in the cluster, many logic blocks must 
be consumed
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⑴

⑵

VPack
• Goal:
1. Minimize the number of connections between 
clusters
2. Minimize the number of clusters
• Strategy:
1. Select the LUT with the largest number of inputs
2. Merge such the LUT into a cluster
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T-VPack
• VPack: 

• Effective for reducing the number of clusters and the 
number of connections between clusters
→ Not consider the delay for inside and outside the 

cluster

• T-VPack:
1. Connection importance
2. Total route number impact

→Reduce the delay by placing the critical path in the
cluster
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Connection Importance
• LUTs close to the critical path (LUT with small Slack 

(delay margin)) are placed into the same cluster
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（Arrival time）

（Request time）

Slack = Request – Arrival



Total Route Number Impact
• Place LUTs affected by many critical paths in the 

same cluster
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RPack/t-RPack/iRAC
• Consider routing characteristics (degree of freedom 

in routing, simplicity connection)

43

Although an empty exist,
only a external wire

No empty in the cluster,
however three external wires



Place-and-Routing
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VPR (Versatile Place and Route)
1. Placement
2. Routing

・Detail routing



Placement
Goal: Determine the position of each block
Strategy:
1. Place logical blocks and I/O blocks randomly
2. Exchange two blocks at random and accept cost improvement 
with a certain probability
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Routing
• Determining the path of the signal connection for each block
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Global routing Detail routing



Detail Routing
1. Routing at minimum cost for each net
2. Add cost to competing routes, re-calculate 
minimum cost, then perform routing
Example: Routing to input the output of X, Y to Z
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X

Y

Z

X

Y

Z

Cost：4→6.5

Cost：3→5.5

Cost：5

Cost：4

：Competition

Twice cost for
a competing
route

1 Cost



Low-Power Design Tools

1. Low-power design
2. Emap for technology mapping
3. P-T-VPack for clustering
4. P-VPR for place-and-routing
5. ACE for a measurement of activity



Low-Power Design

• Dynamic Power Consumption
𝑃𝑜𝑤𝑒𝑟!"#$%&' = 0.5 * 𝑉( * 𝑓')* * -

&∈#,!-.

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 * 𝐶&

• Power Reduction
1. Low voltage for power source (𝑉)
2. Low clock frequency (𝑓!"#)
3. Low switching activity (𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 )
4. Low capacitance (𝐶$)
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Emap: Mapping Tool
• Embed routing with the largest activity in the LUT
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Without activity consideration

With activity consideration



Cont'd
• Consider fan-out, reduce the number of branches of wiring by reducing 

the number of nodes to be duplicated
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Without considering fan-out

With considering fan-out



P-T-VPack: Clustering Tool
• Include routes with high activity in the cluster
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Without considering activity

With considering activity



P-VPR: Place-and-Routing Tool

• Determine routes with high activity so that they are 
as short as possible
→ Consider making the routing with a high activity, 

which is not placed in the critical path

53



ACE: Activity Measurement Tool

1. Deterministic approach by using a simulation result
→High prediction, however long-time computation and 

depend on a testbench quality

2. Probabilistic approach
→Low prediction and short-time, however result is 

depend on an initial value

54



Conclusion

• In each process, aimed to optimize delay, area, 
power consumption

• In the future, it is expected that a method to 
optimize across multiple processes
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Exercise 
• (Mandatory) Investigate another open-source CAD tools for 

FPGA architecture and CAD research and report it.
• Send a report via OCW-i
Deadline is 7th, July, 2020 
(At the beginning of the lecture)


