Parallel and Reconfigurable VLSI Computing (4)

FPGA Synthesis Flow

Hiroki Nakahara
Tokyo Institute of Technology

Outline

Synthesis Flow
Technology Mapping
Clustering
Place-and-Routing
Low Power Design

A A o

Conclusion

Synthesis Flow

always @ (posedge clk)begin
if(sum>0)
HDL d‘.uﬂo;
— o x<=b,
Logm Synthesis — o
Gate level netlist b ck
Technology mapping \’ gl"(‘:‘l
| LUT level netlist —Jwr—
Clustering \
| LB level netlist @%
Placement
’ O
Routing 0
1 OoMO
Bit stream gen.
' Bit stream []
<< e HDL:Hardware description language D
‘i LUT: Look Up Table
_g‘:’ L8 Logic Biock OO

Re
RO

ated Wor

<: VTR (Verilog-to-

uting) Project

* Open-source CAD tools for FPGA architecture and CAD
research

https://github.com/verilog-to-routing/vtr-verilog-to-routing

* Enable the investigation of new FPGA architectures and CAD
algorithms, which are not possible with closed-source tools

 The VTR design flow takes as input a Verilog description of a
digital circuit, and a description of the target FPGA
architecture

» Elaboration & Synthesis (ODIN II)
* Logic Optimization & Technology Mapping (ABC)
e Packing, Placement, Routing & Timing Analysis (VPR)

Technology Mapping

— FlowMap

Logic synthesis "La bE|Ing and Cut

*Mapping

LUT level netlist

Clustering

LB level netlist
Placement

3

Routing
b

Bit stream gen.

' Bit stream

HDL:Hardware description language

: LUT: Look Up Table
\ ___.:"-"'! LB : Logic Block

Technology Mapping

* Convert a given Boolean netlist into an LUT netlist

] H Li?u ‘ _Pj] jj‘ iT
— | e

Y WY

Ty W

Boolean netlist LUT netlist

FlowMap Process

)
v =

v
v

Boolean netlist

Labeling % | Mapping

P (4 :‘~~
o L s Y
? g
<) \
g Y S b &
[[~ - 2

: .\B—LUT{ \3—LUT{ e/

3T |

LUT netlist

FlowMap Process

=
v >

v
v

Boolean netlist

Labeling ‘, Mapping

P (4 :‘~~
o L s Y
? g
<) \
g Y S b &
[[~ - 2

: .\B—LUT{ \3—LUT{ e/

3T |

LUT netlist

FlowMap Algorithm

1) Extract a given Boolean network
dependent on an output node t

2) Assign the input label to O

3) Label the node to which the already
labeled node is input

4) Look for the range that can be covered by
the k-LUT and place a cut on the input

5) repeat 3) and 4)

-output Network

Extract a Single

10

Assign the Input Label to O

11

Labeling the Index by Topological Order

Covering by the k-Input LUT (k-LUT)

pesE L.,
......
.
0
.
.
.
.
.
.
.
.

l - \'. ..‘...’..
\

#in is less than 4,

and #out is one.

D is infeasible,

since #in=5 and #out=3.

13

Covering by the k-Input LUT (k-LUT)

3-LUT:

#in is less than 4,

and #out is one.

D Is infeasible,

since #in=3 and #out=2.

14

Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

and #out is one.

D Is feasible,

since #in=2 and #out=1.

15

Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

and #out is one.

D s infeasible,

since #in=4 and #out=2.

16

Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

and #out is one.

D Is feasible,

since #in=2 and #out=1.

17

Covering by the k-Input LUT (k-LUT)

ey
e
.
.....
.
.
.
.
.
.
.

{ \ ::..{. 0'.000.".
AVB O @ 3-LUT:

1
i :
€ 1 1§/ i #inis less than 4,
Y t .
\ and #out is one.
. :

\ u‘..'. é
N, .
SO\ is feasible,

A4 :
v i since #in=2 and #out=1.

PR
7’ \ '..
\ s 7 \ , s
= A" « K
[(N
~ \/ ~ 7 .
S 7’
N 7’

~ - o~
A 18

Labeling

e Calculate the index of the node whose input is the already
assigned

19

Covering by the k-Input LUT (k-LUT)

Y
...........
,,,,,
- .
. .
. .
o .

/)0\\\
t 9
71= . 3-LUT:
RE\E i #inis less than 4,
[H
roh : i and #out is one.
! M
L 1%
| RN is infeasible,
: /‘(, i since #in=5 and #out=4.
\ P :
\ // \\ ,,
X Pk Y

SN G &
| 20

Covering by the k-Input LUT (k-LUT)

r A R O
\ .
\

Y
I

| : HU-

| 1 1 1 i #in is less than 4,

[%

AN 1 i and #out is one.

I P :

| \ :
: N
! 17%., . |

: O\ is infeasible,

| \

| Mo i since #in=3 and #out=3.
| P \]

\ /, \ PR

L\’ «wx”

f [T

\\/\ ,\,/

N 7

.
o

| RN O 21

Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D s infeasible,

since #in=3 and #out=2.

22

Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D s infeasible,

since #in=3 and #out=2.

23

Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D Is feasible,

since #in=2 and #out=1.

24

ing Index

Update Label

25

Covering by the k-Input LUT (k-LUT)

3-LUT:
#in is less than 4,

and #out is one.

D s infeasible,

since #in=4 and #out=3.

26

Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D is feasible,

since #in=3 and #out=1.

27

ing Index

Update Label

28

Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D Is feasible,

since #in=3 and #out=1.

29

ing Index

Update Label

30

Covering by the k-Input LUT (k-LUT)

3-LUT:
#in is less than 4,

and #out is one.

D Is feasible,

since #in=3 and #out=1.

31

ing Index

Update Label

32

Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

nd #out is one.

D is feasible,

since #in=3 and #out=1.

33

FlowMap Process

)
v =

v
v

Boolean netlist

Labeling ‘, Mapping

3T |

LUT netlist

34

Technology Mapping

35

Merge k-LUT Netlists

ey
u
.....
.
.
.
.
.

e
.
.
.0
.

Z \

3-LUT

L[|

e g

3-LUT

b T

36

Clustering

R
— 1. VPack
' 2. T-Vpack
Logic synthesis
| Gate level netlist * Connection im portance

Technology mapping

e Total route number impact

LUT level netlist
3. RPack/t-RPack/iRAC

LB level netlist
Placement

3

Routing
b

Bit stream gen.

' Bit stream

HDL:Hardware description language

: LUT: Look Up Table
\ ___.:"--'! LB : Logic Block

37

Clustering

* Goal: Merge several LUTs into a cluster
* Considerations:

1. Routing outside the cluster has a larger delay penalty than
in the cluster

2. If there is an empty in the cluster, many logic blocks must
be consumed

=il

»

VPack

e Goal:

1. Minimize the number of connections between
clusters

2. Minimize the number of clusters
* Strategy:
1. Select the LUT with the largest number of inputs

2. Merge such the LUT into a cluster

i ‘i>||| |

yau T

(1) %

2)

T-VPack

* VPack:

 Effective for reducing the number of clusters and the
number of connections between clusters

— Not consider the delay for inside and outside the
cluster

 T-VPack:

1. Connection importance
2. Total route number impact
—>Reduce the delay by placing the critical path in the

cluster

40

Connection Importance

e LUTs close to the critical path (LUT with small Slack
(delay margin)) are placed into the same cluster

1 3
(Arrival time) 1
2
2 3 4
0 0 [Out
. 2 4
(Request time) 1
y 2
: LUT on critical path

: other LUT

Slack = Request — Arrival

41

Total Route Number Impact

* Place LUTs affected by many critical paths in the
same cluster

In

W Cluster

Out

: LUT on critical path

: other LUT

42

RPack/t-RPack/iRAC

* Consider routing characteristics (degree of freedom
in routing, simplicity connection)

—

No empty in the cluster, Although an empty exist,

however three external wires only a external wire

43

Place-and-Routing

— VPR (Versatile Place and Route)

1. Placement

Logic synthesis
Gate level netlist 2. Routin g
Technology mapping

*Detail routing

LUT level netlist

Clustering

B level| netlist

Placement
Routin

Bit stream gen.

' Bit stream

HDL :Hardware description language

LUT: Look Up Table
\ .__,"“.--“ LB : Logic Block

44

Placement

Goal: Determine the position of each block
Strategy:
1. Place logical blocks and 1/0 blocks randomly

2. Exchange two blocks at random and accept cost improvement
with a certain probability

=x-u

....................

45

Routing

* Determining the path of the signal connection for each block

REEREI=REI=N
Ihkh jii |
=N=| =]

[m!
| — —{ - H H

t>Ii—”--ll--i,']--ll--'*|l
L]

]—

-

L

Global routing Detail routing

| e

Detail Routing

1. Routing at minimum cost for each net

2. Add cost to competing routes, re-calculate
minimum cost, then perform routing

Example: Routing to input the output of X, Yto Z

Cost:4-6. 1 Cost

v

@ :Competition

Twice cost for

a competing

Cost:3->5b. route

47

Low-Power Design Tools

1. Low-power design

2. Emap for technology mapping
3. P-T-VPack for clustering

4. P-VPR for place-and-routing

5. ACE for a measurement of activity

Low-Power Design

* Dynamic Power Consumption
Powergynamic = 0.5 V2 fup - z Activity(i) - C;

lEnodes

* Power Reduction
. Low voltage for power source (V)
. Low clock frequency (f.ix)

. Low switching activity (Activity(i))

B~ W N B

. Low capacitance (C;)

Emap: Mapping Tool

* Embed routing with the largest activity in the LUT

0.2| |0.1 lO.ZlOB

3-LUT

vy vy 0.6

3-LUT Without activity consideration
01 |04 |02

+ \ 4 +
3-LUT

v

O.Zl O.Il 0.2| |0.3

3-LUT

0-1\—* A With activity consideration

3-LUT

0.1 04 0.2
v

3-LUT
‘ 50

Cont'd

e Consider fan-out, reduce the number of branches of wiring by reducing
the number of nodes to be duplicated

N [
3-LUT 3-LUT 3-LUT
\ 20 2 / l vY
3-LUT 3-LUT

l l

by | 4

3-LUT 3-LUT

l l
YVYY YyVYY

3-LUT 3-LUT

|

With considering fan-out

51

P-T-VPack: Clustering Tool

* Include routes with high activity in the cluster

0.2]1 0.1 0.2] |0.3
. l ¢ """" 3-LUT
3wt | [
: 3-LUT
‘.".0.1|—¢ v i i i /i
peral Ohm Without considering activity
01 fed o2 |f 0 |5V
yvy
3-LUT
v
0.2] 0.1] 0.2] |0.3
l l 3-LUT
-wt | || e,
|—j With considering activit
01 “vvvw Y \ﬁ g Y
3-LUT | 0.1
0.1]; 0.4 {02 —
vVYYV 3-LUT

“ o
. -
o »
. g 52
. .
..'¢"‘

P-VPR: Place-and-Routing Tool

* Determine routes with high activity so that they are
as short as possible

— Consider making the routing with a high activity,
which is not placed in the critical path

ACE: Activity Measurement Tool

1. Deterministic approach by using a simulation result

—>High prediction, however long-time computation and
depend on a testbench quality

2. Probabilistic approach

—>Low prediction and short-time, however result is
depend on an initial value

Conclusion

* In each process, aimed to optimize delay, area,
power consumption

* In the future, it is expected that a method to
optimize across multiple processes

Exercise

e (Mandatory) Investigate another open-source CAD tools for
FPGA architecture and CAD research and report it.

e Send a report via OCW-i
Deadline is 7th, July, 2020

(At the beginning of the lecture)

