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Synthesis Flow
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* Open-source CAD tools for FPGA architecture and CAD
research

https://github.com/verilog-to-routing/vtr-verilog-to-routing

* Enable the investigation of new FPGA architectures and CAD
algorithms, which are not possible with closed-source tools

 The VTR design flow takes as input a Verilog description of a
digital circuit, and a description of the target FPGA
architecture

» Elaboration & Synthesis (ODIN II)
* Logic Optimization & Technology Mapping (ABC)
e Packing, Placement, Routing & Timing Analysis (VPR)



Technology Mapping
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Technology Mapping

* Convert a given Boolean netlist into an LUT netlist
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FlowMap Process
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FlowMap Process
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FlowMap Algorithm

1) Extract a given Boolean network
dependent on an output node t

2) Assign the input label to O

3) Label the node to which the already
labeled node is input

4) Look for the range that can be covered by
the k-LUT and place a cut on the input

5) repeat 3) and 4)




-output Network

Extract a Single
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Assign the Input Label to O
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Labeling the Index by Topological Order




Covering by the k-Input LUT (k-LUT)
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#in is less than 4,

and #out is one.

D is infeasible,

since #in=5 and #out=3.
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Covering by the k-Input LUT (k-LUT)

3-LUT:

#in is less than 4,

and #out is one.

D Is infeasible,

since #in=3 and #out=2.
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

and #out is one.

D Is feasible,

since #in=2 and #out=1.
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

and #out is one.

D s infeasible,

since #in=4 and #out=2.
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

and #out is one.

D Is feasible,

since #in=2 and #out=1.

17



Covering by the k-Input LUT (k-LUT)
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Labeling

e Calculate the index of the node whose input is the already
assigned
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Covering by the k-Input LUT (k-LUT)
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Covering by the k-Input LUT (k-LUT)
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D s infeasible,

since #in=3 and #out=2.
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Covering by the k-Input LUT (k-LUT)
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and #out is one.
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Covering by the k-Input LUT (k-LUT)
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and #out is one.

D Is feasible,

since #in=2 and #out=1.
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ing Index

Update Label
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Covering by the k-Input LUT (k-LUT)

3-LUT:
#in is less than 4,

and #out is one.

D s infeasible,

since #in=4 and #out=3.
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:
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and #out is one.

D is feasible,

since #in=3 and #out=1.
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ing Index

Update Label
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Covering by the k-Input LUT (k-LUT)
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and #out is one.

D Is feasible,
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ing Index

Update Label
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Covering by the k-Input LUT (k-LUT)

3-LUT:
#in is less than 4,

and #out is one.

D Is feasible,

since #in=3 and #out=1.
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ing Index

Update Label
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

nd #out is one.

D is feasible,

since #in=3 and #out=1.
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FlowMap Process
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Technology Mapping
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Merge k-LUT Netlists
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Clustering

R
— 1. VPack
' 2. T-Vpack
Logic synthesis
| Gate level netlist * Connection im portance

Technology mapping

e Total route number impact

LUT level netlist
3. RPack/t-RPack/iRAC

LB level netlist
Placement
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b

Bit stream gen.

' Bit stream

HDL:Hardware description language

: LUT: Look Up Table
\ ___.:"--'! LB : Logic Block
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Clustering

* Goal: Merge several LUTs into a cluster
* Considerations:

1. Routing outside the cluster has a larger delay penalty than
in the cluster

2. If there is an empty in the cluster, many logic blocks must
be consumed
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VPack

e Goal:

1. Minimize the number of connections between
clusters

2. Minimize the number of clusters
* Strategy:
1. Select the LUT with the largest number of inputs

2. Merge such the LUT into a cluster
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T-VPack

* VPack:

 Effective for reducing the number of clusters and the
number of connections between clusters

— Not consider the delay for inside and outside the
cluster

 T-VPack:

1. Connection importance
2. Total route number impact
—>Reduce the delay by placing the critical path in the

cluster
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Connection Importance

e LUTs close to the critical path (LUT with small Slack
(delay margin)) are placed into the same cluster

1 3
(Arrival time) 1
2
2 3 4
0 0 [ Out
. 2 4
(Request time) 1
y 2
: LUT on critical path

: other LUT

Slack = Request — Arrival
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Total Route Number Impact

* Place LUTs affected by many critical paths in the
same cluster

In

W Cluster

Out

: LUT on critical path

: other LUT
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RPack/t-RPack/iRAC

* Consider routing characteristics (degree of freedom
in routing, simplicity connection)

—

No empty in the cluster, Although an empty exist,

however three external wires only a external wire
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Place-and-Routing

— VPR (Versatile Place and Route)

1. Placement

Logic synthesis
Gate level netlist 2. Routin g
Technology mapping

*Detail routing

LUT level netlist

Clustering

B level| netlist

Placement
Routin

Bit stream gen.

' Bit stream

HDL :Hardware description language

LUT: Look Up Table
\ .__,"“.--“ LB : Logic Block
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Placement

Goal: Determine the position of each block
Strategy:
1. Place logical blocks and 1/0 blocks randomly

2. Exchange two blocks at random and accept cost improvement
with a certain probability
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Routing

* Determining the path of the signal connection for each block
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Detail Routing

1. Routing at minimum cost for each net

2. Add cost to competing routes, re-calculate
minimum cost, then perform routing

Example: Routing to input the output of X, Yto Z

Cost:4-6. 1 Cost

v

@ :Competition

Twice cost for

a competing

Cost:3->5b. route
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Low-Power Design Tools

1. Low-power design

2. Emap for technology mapping
3. P-T-VPack for clustering

4. P-VPR for place-and-routing

5. ACE for a measurement of activity



Low-Power Design

* Dynamic Power Consumption
Powergynamic = 0.5 V2 fup - z Activity(i) - C;

lEnodes

* Power Reduction
. Low voltage for power source (V)
. Low clock frequency (f.ix)

. Low switching activity (Activity(i))

B~ W N B

. Low capacitance (C;)



Emap: Mapping Tool

* Embed routing with the largest activity in the LUT
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Cont'd

e Consider fan-out, reduce the number of branches of wiring by reducing
the number of nodes to be duplicated
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P-T-VPack: Clustering Tool

* Include routes with high activity in the cluster
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P-VPR: Place-and-Routing Tool

* Determine routes with high activity so that they are
as short as possible

— Consider making the routing with a high activity,
which is not placed in the critical path



ACE: Activity Measurement Tool

1. Deterministic approach by using a simulation result

—>High prediction, however long-time computation and
depend on a testbench quality

2. Probabilistic approach

—>Low prediction and short-time, however result is
depend on an initial value



Conclusion

* In each process, aimed to optimize delay, area,
power consumption

* In the future, it is expected that a method to
optimize across multiple processes



Exercise

e (Mandatory) Investigate another open-source CAD tools for
FPGA architecture and CAD research and report it.

e Send a report via OCW-i
Deadline is 7th, July, 2020

(At the beginning of the lecture)



