
Parallel and Reconfigurable VLSI Computing (4)

FPGA Synthesis Flow

Hiroki Nakahara
Tokyo Institute of Technology

Outline

1. Synthesis Flow
2. Technology Mapping
3. Clustering
4. Place-and-Routing
5. Low Power Design
6. Conclusion

2

Synthesis Flow

3

Related Work: VTR (Verilog-to-
Routing) Project
• Open-source CAD tools for FPGA architecture and CAD

research
https://github.com/verilog-to-routing/vtr-verilog-to-routing
• Enable the investigation of new FPGA architectures and CAD

algorithms, which are not possible with closed-source tools
• The VTR design flow takes as input a Verilog description of a

digital circuit, and a description of the target FPGA
architecture
• Elaboration & Synthesis (ODIN II)
• Logic Optimization & Technology Mapping (ABC)
• Packing, Placement, Routing & Timing Analysis (VPR)

Technology Mapping

5

FlowMap

・Labeling and Cut
・Mapping

Technology Mapping
• Convert a given Boolean netlist into an LUT netlist

6

Boolean netlist LUT netlist

FlowMap Process

7

Boolean netlist DAG

Labeling

Cut

Mapping

LUT netlist

FlowMap Process

8

Boolean netlist DAG

Labeling

Cut

Mapping

LUT netlist

FlowMap Algorithm

1) Extract a given Boolean network
dependent on an output node t
2) Assign the input label to 0
3) Label the node to which the already
labeled node is input
4) Look for the range that can be covered by
the k-LUT and place a cut on the input
5) repeat 3) and 4)

9

Extract a Single-output Network

10

Assign the Input Label to 0

11

0 0 0 0 0

Labeling the Index by Topological Order

12

0 0 0 0 0

1 1 1

Index = (Max. of above the cut) + 1

Covering by the k-Input LUT (k-LUT)

13

0 0 0 0 0

1 1 1

3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=5 and #out=3.

Covering by the k-Input LUT (k-LUT)

14

0 0 0 0 0

1 1 1

3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=3 and #out=2.

Covering by the k-Input LUT (k-LUT)

15

0 0 0 0 0

1 1 1

3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=2 and #out=1.

Covering by the k-Input LUT (k-LUT)

16

0 0 0 0 0

1 1 1

3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=4 and #out=2.

Covering by the k-Input LUT (k-LUT)

17

0 0 0 0 0

1 1 1

3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=2 and #out=1.

Covering by the k-Input LUT (k-LUT)

18

0 0 0 0 0

1 1 1

3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=2 and #out=1.

Labeling
• Calculate the index of the node whose input is the already

assigned

19

0 0 0 0 0

1 1 1

1

Covering by the k-Input LUT (k-LUT)

20

0 0 0 0 0

1 1 1

1

3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=5 and #out=4.

Covering by the k-Input LUT (k-LUT)

21

0 0 0 0 0

1 1 1

1

3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=3 and #out=3.

Covering by the k-Input LUT (k-LUT)

22

0 0 0 0 0

1 1 1

1

3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=3 and #out=2.

Covering by the k-Input LUT (k-LUT)

23

0 0 0 0 0

1 1 1

1

3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=3 and #out=2.

Covering by the k-Input LUT (k-LUT)

24

0 0 0 0 0

1 1 1

1

3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=2 and #out=1.

Update Labeling Index

25

0 0 0 0 0

1 1 1

1

2

Covering by the k-Input LUT (k-LUT)

26

0 0 0 0 0

1 1 1

1

2

3-LUT：

#in is less than 4,

and #out is one.

is infeasible,

since #in=4 and #out=3.

Covering by the k-Input LUT (k-LUT)

27

0 0 0 0 0

1 1 1

1

2

3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=3 and #out=1.

Update Labeling Index

28

0 0 0 0 0

1 1 1

1

2

2

Covering by the k-Input LUT (k-LUT)

29

0 0 0 0 0

1 1 1

1

2

2

3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=3 and #out=1.

Update Labeling Index

30

0 0 0 0 0

1 1 1

1

2

2

2

Covering by the k-Input LUT (k-LUT)

31

0 0 0 0 0

1 1 1

1

2

2

2

3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=3 and #out=1.

Update Labeling Index

32

0 0 0 0 0

1 1 1

1

2

2

2
2

Covering by the k-Input LUT (k-LUT)

33

0 0 0 0 0

1 1 1

1

2

2

2
2

3-LUT：

#in is less than 4,

and #out is one.

is feasible,

since #in=3 and #out=1.

FlowMap Process

34

Boolean netlist DAG

Labeling

Cut

Mapping

LUT netlist

Technology Mapping

35

Merge k-LUT Netlists

36

Clustering

37

1. VPack
2. T-Vpack

• Connection importance

• Total route number impact
3. RPack/t-RPack/iRAC

Clustering

• Goal: Merge several LUTs into a cluster
• Considerations:
1. Routing outside the cluster has a larger delay penalty than
in the cluster
2. If there is an empty in the cluster, many logic blocks must
be consumed

38

⑴

⑵

VPack
• Goal:
1. Minimize the number of connections between
clusters
2. Minimize the number of clusters
• Strategy:
1. Select the LUT with the largest number of inputs
2. Merge such the LUT into a cluster

39

T-VPack
• VPack:

• Effective for reducing the number of clusters and the
number of connections between clusters
→ Not consider the delay for inside and outside the

cluster

• T-VPack:
1. Connection importance
2. Total route number impact

→Reduce the delay by placing the critical path in the
cluster

40

Connection Importance
• LUTs close to the critical path (LUT with small Slack

(delay margin)) are placed into the same cluster

41

（Arrival time）

（Request time）

Slack = Request – Arrival

Total Route Number Impact
• Place LUTs affected by many critical paths in the

same cluster

42

RPack/t-RPack/iRAC
• Consider routing characteristics (degree of freedom

in routing, simplicity connection)

43

Although an empty exist,
only a external wire

No empty in the cluster,
however three external wires

Place-and-Routing

44

VPR (Versatile Place and Route)
1. Placement
2. Routing

・Detail routing

Placement
Goal: Determine the position of each block
Strategy:
1. Place logical blocks and I/O blocks randomly
2. Exchange two blocks at random and accept cost improvement
with a certain probability

45

Routing
• Determining the path of the signal connection for each block

46

Global routing Detail routing

Detail Routing
1. Routing at minimum cost for each net
2. Add cost to competing routes, re-calculate
minimum cost, then perform routing
Example: Routing to input the output of X, Y to Z

47

X

Y

Z

X

Y

Z

Cost：4→6.5

Cost：3→5.5

Cost：5

Cost：4

：Competition

Twice cost for
a competing
route

1 Cost

Low-Power Design Tools

1. Low-power design
2. Emap for technology mapping
3. P-T-VPack for clustering
4. P-VPR for place-and-routing
5. ACE for a measurement of activity

Low-Power Design

• Dynamic Power Consumption
𝑃𝑜𝑤𝑒𝑟!"#$%&' = 0.5 * 𝑉(* 𝑓')* * -

&∈#,!-.

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 * 𝐶&

• Power Reduction
1. Low voltage for power source (𝑉)
2. Low clock frequency (𝑓!"#)
3. Low switching activity (𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖)
4. Low capacitance (𝐶$)

49

Emap: Mapping Tool
• Embed routing with the largest activity in the LUT

50

Without activity consideration

With activity consideration

Cont'd
• Consider fan-out, reduce the number of branches of wiring by reducing

the number of nodes to be duplicated

51

Without considering fan-out

With considering fan-out

P-T-VPack: Clustering Tool
• Include routes with high activity in the cluster

52

Without considering activity

With considering activity

P-VPR: Place-and-Routing Tool

• Determine routes with high activity so that they are
as short as possible
→ Consider making the routing with a high activity,

which is not placed in the critical path

53

ACE: Activity Measurement Tool

1. Deterministic approach by using a simulation result
→High prediction, however long-time computation and

depend on a testbench quality

2. Probabilistic approach
→Low prediction and short-time, however result is

depend on an initial value

54

Conclusion

• In each process, aimed to optimize delay, area,
power consumption

• In the future, it is expected that a method to
optimize across multiple processes

55

Exercise
• (Mandatory) Investigate another open-source CAD tools for

FPGA architecture and CAD research and report it.
• Send a report via OCW-i
Deadline is 7th, July, 2020
(At the beginning of the lecture)

