
Parallel and Reconfigurable VLSI Computing (10)

HLS Optimizations

Hiroki Nakahara
Tokyo Institute of Technology

References:
[1] Micheal Fingeroff, "High-Level Synthesis Blue Book," Xlibris, 2010.
[2] Ryan Kastner, Janarbek Matai, Stephen Neuendorffer, "Parallel
Programming for FPGAs," arXiv:1805.03648, 2018.
https://arxiv.org/abs/1805.03648

Outline

• HLS Optimizations though FIR Design
• Code reconstruction

• Useful cording guideline for debugging
• Performance analysis on LLVM-IR
• Area-time trade-off
• Code hoisting
• Loop fission
• Loop unrolling
• Array partition
• Loop pipelining
• Bitwidth optimization

HLS Optimizations
though FIR Design

FIR Filter Background
• xn: N sampling signals and yn: Output signal, then

, where a filter coefficient hn is given by

, where !𝜔 =2𝜋𝜔 /𝜔! denotes normalized freq.,
𝜔! denotes sampling freq., H0(!𝜔) ∈ R denotes
frequency characteristic, pn denotes window function,
and %Γ=(N-1)/2.

Cont'd

• Deference equation for a FIR filter:

• Diagram for a FIR filter:

C++ Behavior for a FIR Filter
https://github.com/HirokiNakahara/FPGA_lecture/tree/master/Lec10_HLS_Design/fir.cpp

Code Reconstruction

• Writing highly optimized synthesizable HLS code is
often not a straightforward process.
• It involves a deep understanding of the application

at hand, the ability to change the code such that the
Vivado HLS tool creates optimized hardware
structures and utilizes the directives in an effective
manner
• FSM-based RTL design experience will help to understand

Convert to Fixed Point Precision
See, https://github.com/HirokiNakahara/FPGA_lecture/tree/master/Lec7_Practical_RTL_design/fir_int.c

Debug for C Description
• Confirm the operation of FIR
• In/Out are reused as a testbench for HDL simulation
• Note, a parallel operation cannot be verified
• Area and speed of the circuit can not be estimated

Test sin wave (20KHz → 10 KHz) LPF Output

For Useful Coding
• Use typedef for different variables for changing the types of data

(described later)

• Assign labels into loops for debugging

Performance Analysis on Vivado HLS

• Click "Analysis", right click on each block, then select
"Goto Source"

Parallel Computation Manner
• As same as the RTL design, independent operations

are executed in parallel

Low Level Virtual Machine (LLVM)
• Modularized, reusable compiler and toolchain technology
• Front end of C, C ++, Objective-C etc.
• Convert to LLVM-IR (Internal Representation)
• Then, optimized for Hardware (FPGA)
• Rust, Clang, LDC, Vivado HLS, Intel OpenCL

LLVM-IR
Example: FIR
Filter

This code is generated using
microblazeel-xilinx-linux-gnu-gcc -O1
-mno-xl-soft-mul -S fir.c

Different Architectures
• Sequential manner

• Pipeline manner

Area-Time Trade-off
• Sequential manner

• Pipeline manner

Vertical (Area)
Horizontal (Time)

Loop with Conditional Bounds
• Having a variable as the loop upper or lower bound

often results in the loop counter hardware being
larger than needed
• Having an unconstrained bit width on the loop exit

condition results in control logic larger than needed

Optimizing the Loop Counter
• In order for HLS to reduce the bit width of the loop counter the loop

upper bound should be set to a constant

• However, since the execution of each loop iteration is determined by the
variable, "ctrl"

• It is done by using a conditional break in the loop body

It will be reduced by
bitwidth optimization (later)

Calculating Performance
• Necessary to dene precise metrics
• What is "fast" design?

• Efficiency?
• operations/sec
• MACs/sec
• bits/sec

• Latency? Throughput? Computation time?
• High-level synthesis tools talk about the designs in

terms of number of cycles, and the frequency of the
clock
• Select adequate measurement of a target application
• Compare them using the same metric

Operation Chaining
• Consider the multiply accumulate operation that is done in a FIR filter tap

• Assume that the add operation takes 2 ns to complete, and a multiply
operation takes 3 ns

5 cycles (1/5ns)
→ 200million MACs/sec

3 cycles
→ 167million MACs/sec

1 cycles
→ 200million MACs/sec

Code Hoisting
• The if/else statement inside of the for loop is inefficient.

• For every control structure in the code, the Vivado HLS tool creates
logical hardware that checks if the condition is met

• Therefore, the statements within the if branch can be "hoisted" out of
the loop

Comparison

• Original with Hoisting of "if"

Loop Fission
• The FIR has two fundamental operations: Shifts the data through the shift_reg

array, and the MAC operations

• Loop fission takes these two operations and implements each of them in their
own loop
• Each one is optimized independently, so it is a decomposition of an FSM

Loop Unrolling

• By default, the Vivado HLS tool synthesizes for loops
in a sequential manner
• The data path executes sequentially for each

iteration of the loop
• Manually unrolling the SHIFT_REG loop

Unroll Pragma
#pragma HLS unroll factor=n
(if factor is none, the HLS tries to unroll all operations!!)

If you design does not synthesize in under 15 minutes, you should carefully consider the effect of your optimizations.
It is certainly possible that large designs can take a significant amount for the Vivado HLS to synthesize them.

Partition BRAM into Smaller One?
• Use "#pragma HLS array_partition"

BRAM

Single port BRAM

4-port BRAM?
Four of BRAMs?

Array_Partition
#pragma HLS ARRAY_PARTITION variable=(variable
name) (access pattern) factor=(# of partitions)
dim=(array dimension)

access pattern dimension
(dim=0 denotes all
dimension are partitioned)

Example

• Good performance! But...

Loop Pipelining
• All of the statements in the second iteration happen only when all of the

statements from the first iteration are complete

• Schedule for three iterations of a pipelined version of the MAC for loop

Loop Initiation Interval (II)

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

#pragma HLS pipeline II=1 #pragma HLS pipeline II=2
3 Muls+2 Adds

2 Muls + Add

• The number of clock cycles until the next iteration of the loop can start
• Note that, this may not always be possible due to resource/timing

constraints and/or dependencies in the code

Data Type in C-language
• C language provides many different data types to describe

different kinds of behavior
• The primary benefits of using these different data types in

software revolve around the amount of storage that the data
type require

• All of these data type have a size which is a power of 2
• (unsigned/singed) int
• float
• double
• (unsigned/singed) char
• short long
• long
• long long

Bitwidth Optimization

• The same benefits are seen in an FPGA
implementation, but they are even more
pronounced
• Since the Vivado HLS supports a custom (arbitrary

precision) data types

• #include "ap_int.h", then you can use
• unsigned: ap_uint<width>, where width takes 1 to 1024
• signed: ap_int<width>

More Reduced!

Exercise

1. (Mandatory) Compare an unrolling FIR design with a
pipelined one with respect to HW resource and
performance

2. (Optional) Execute an unrolling FIR design on your ZYBO
board

If you meet any troubles, don't hesitate to contact me.
nakahara@ict.e.titech.ac.jp

Deadline is 7th, Aug., 2020 (At the beginning of the
next lecture)

