
Parallel and Reconfigurable VLSI Computing (7)

Practical RTL Design

Hiroki Nakahara
Tokyo Institute of Technology

Outline

• Practical RTL design methodology
• From behavior (C/C++ code) to HDL one

• Interface co-design
• Control a hardware from an ARM processor

• RTL design optimization

Practical RTL Design
Methodology

C/C++ to RTL
• Determine the specifications of the circuit

• Timing chart, state transition diagram, performance,
block diagram

• Consider the configuration of the module
• Design and combine for each IP core

• Function assigned to each core and its resource
• Including a consideration of interface
• Often written in C/C ++
• It becomes a testbench for a verification

• Convert C/C++ description to RTL
• Optimize behaviors (pipelining and parallelization)

• Automation by the remaining work with CAD

C/C++ Description for a Concept
of Module
• Approximate ~300 lines for single function
• Data input/output (Interface)
• Data processing

Case Study: FIR Filter

• xn: N sampling signals and yn: Output signal, then

, where a filter coefficient hn is given by

, where !𝜔 =2𝜋𝜔 /𝜔! denotes normalized freq.,
𝜔! denotes sampling freq., H0(!𝜔) ∈ R denotes
frequency characteristic, pn denotes window function,
and %Γ=(N-1)/2.

Cont'd

• Deference equation for a FIR filter:

• Diagram for a FIR filter:

FIR Filter Coefficient Design
• MathWorks Matlab with DSP System Toolbox

• Sampling Freq.: 44.1 kHz
• LPF for 20 kHz → Normalized cut-off freq.
• #Taps: 11
• Window function: Hamming

C Behavior for a FIR Filter
https://github.com/HirokiNakahara/FPGA_lecture/tree/master/Lec7_Practical_RTL_design/fir.c

Debug for C Description
• Confirm the operation of FIR
• In/Out are reused as a testbench for HDL simulation
• Note, a parallel operation cannot be verified
• Area and speed of the circuit can not be estimated

Test sin wave (20KHz → 10 KHz) LPF Output

Convert to Fixed Point Precision
https://github.com/HirokiNakahara/FPGA_lecture/tree/master/Lec7_Practical_RTL_design/fir_int.c

C Behavior to RTL
• RTL → Data path + FSM
• Re-write control while, for, switch statements to if-

then, goto statements, then convert FSM
• Assign label to each statement → FSM state number

While

for

switch

Example

Write FSM

• Convert if-then goto statement to FSM
• Writing an FSM until you get used to it!

• Add an initialization processing (register value after resetting)
• Make the whole process an infinite loop

• Generally, return to the initial state after finished all
processing

Example

L1 L2 L3

L3_1 L3_2

L3_3 L3_4

EndIf

End
loop L4

acc=0
i=N-1

i=-1

i!=0

i!=0

i==0

acc+=x*c[0]

shift_reg[i]
=shift_reg[i-1]

acc+=shift_reg[i]
*c[i]

shift_reg[0]=x

i=i-1
*y=acc

reset

Parallel Processing

• Concurrent assignment
tmp=A; A<=B;
A = B; B<=A;
B = tmp;

• Continuous assignments
A=B; B=C; → A=C;

• Reduce number of states by parallel processing
• Considering simultaneous assignment from the

starting FSM description

More Simplify

L1 L2 End
loop L4

acc=0
i=N-1 i!=-1

i==0
i==-1 acc+=x*c[0]

shift_reg[i]
=shift_reg[i-1]

acc+=shift_reg[i]
*c[i]

shift_reg[0]=x

i=i-1
*y=acc

reset

L3

i!=0

RTL Simulation for an FIR Filter

• FIR Filter module: fir_1.v

• Testbench for FIR Filter: testbench_fir_1.v

1 Add internal signals
to wave viewer

2 Then, reset simulation "restart", and simulation again "run 1000ns"

See, https://github.com/HirokiNakahara/FPGA_lecture/tree/master/Lec7_Practical_RTL_design/

Interface Co-Design

Interface

• Data Transfer/Receive between modules

Streaming

Burst

Irregular interval

AXI 4 bus: General Interface of
ARM Embedded FPGA
• Complex protocols

• High-level synthesis (HLS) can be easily generated with
Directive

• System design tool (SDSoC) automatically selects the best
protocol

Programmable LogicARM Processor

Case Study: AXI4 Bus Connection

• Led blinking via AXI-lite bus

4 LEDs

Create a New Project

Project location: C:¥FPGA¥lect7_2¥led_axi_lite_1
Target FPGA: Zybo-Z7-10 or (Z7-20)
Design Sources: None
Constraints: Zybo-Z7-Master.xdc
Simulation Sources: None

Create AXI4 Peripheral
• Select "Tools->Create and Package New IP", then

check "Create AXI4 Peripheral", and "Next"

Specify IP Location

Type "ip_repo" on your project directory, then "Next"

Edit Interface
• Set the default "AXI4-Lite Slave (four 32-bit

registers)", and "OK", then "Finish"

Edit "myip_v1.0"
• Click Flow Navigator->PROJECT MANAGER -> IP Catalog

• Make sure "myip_v1.0" under "User Repository" on "IP Catalog"

• Right click on "myip_v1.0", then select "Edit in IP Packager"
• Click "OK" to save the project location

Synthesis "myip" on a New Vivado

• Make sure "myip_v1_0.v" as a wrapper and
"myip_v1_0_S00_AXI.v" as a top module

Edit "myip_v1_0_S00_AXI.v"

Edit "myip_v1_0.v"

Re-Package IP

• Switch to "Package IP" tab, then "Re-Package IP"

Add a ZYNQ Processor
• In the initial Vivado, Flow Navigator -> IP INTEGRATOR -> Create Block

Design, then add a ZYNQ Processor, and "Run Block Automation"

• Place your "myip" on the Block Design View, then
click "Run Connection Automation", and "OK"

Add a "myip" IP

Right Click

Regenerate Layout

Right Click

Make External

Right Click

Specify an External Port Name

Right Click

set "led"

Write Software Code to Control
"myip" from a ZYNQ Processor
• Click "Generate Bitstream", then "Export

Hardware", and next, "Launch SDK"
• Create a new project as "myip_test"

Source Code

Memory map is automatically
generated by Vivado, and it is
written in "xparameters.h"

Build the project, then "Xilinx->Program
FPGA".
Next, Connect the Zybo to the PC
Run Terminal software (e.g. Tera Term for
Windows, gtkterm for Unix)
Connect "USB Serial Port" with 115200 bps
Select the project in the Project Explorer,
then, in "Menu", "Run As" -> "Launch on
Hardware (System Debugger)"

RTL Design Optimization

Pipelining
(a) Non-pipelining

(b) Pipelining (n = 3 stage)

Processing 1 Processing 2

Stage 1 Stage 2 Stage 3
Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Processing 1

Processing 2

Processing 3

Time 𝑇

Time 𝑇!"!#

𝐿

𝐿/𝑛

…

…

#Processing 𝑁

Processing iteration 2 is done sequentially after the completion of iteration 1

Processing iteration 2 is done after the completion of stage 1 in iteration 1

Pipeline Efficiency
Percentage of the actually achieved speedup to the maximum

𝑆!"!# 𝑁 =
𝑇(𝑁)

𝑇!"!#(𝑁)
=

𝑛𝑁
𝑛 + 𝑁 − 1

=
𝑛

1 + 𝑛 − 1
𝑁

If n << N, then 𝑆!"!# 𝑁 ≅ 𝑛 and the speed-up factor over non-pipelining is n

Percentage of the actually achieved speedup to the maximum

𝐸!"!# 𝑛,𝑁 =
𝑆!"!#(𝑁)

𝑛
=

1

1 + 𝑛 − 1𝑁
=

𝑁
𝑁 + 𝑛 − 1

Parallel Processing and Flynn’s
Taxonomy

(a) SISD

42

Data Memory

Instruction Memory

CU

PU

Instruction Memory

CU

Data Memory

PU

CU

PU

CU

PU…

(c) MISD

Instruction Memory

CU

Data Memory

PU PU PU…

(b) SIMD

Instruction Memory

CU

Data Memory

PU

CU

PU

CU

PU…

(d) MIMD

Loop Unrolling

• Without unrolling

• Loop Unrolling for 3 Operations

for (int i = 0; i < N; i++){
op_Read[i];
op_MAC;
op_Write[i];

}

for (int i = 0; i < N/3; i+=3){
op_Read[i*3];
op_MAC;
op_Write[i*3];
op_Read[i*3+1];
op_MAC;
op_Write[i*3+1];
op_Read[i*3+2];
op_MAC;
op_Write[i*3+2];

}

RD MAC WR RD MAC WR

RD MAC WR
RD MAC WR
RD MAC WR

Throughput: 3 cycles
Latency: 3 cycles
Operation: 1/3 data/cycle

Throughput: 3 cycle
Latency: 3 cycle
Operation: 1 data/cycle

Unrolling for a FIR Filter

Dataflow for Unrolling FIR Filter

reg0 reg1 reg10x reg2

-136 -397 -87 -136

0 y

Critical path

Pipelined Dataflow

• Insert a pipeline register and realized by a DSP block

reg0 reg1 reg10x reg2

-136 -397 -87 -136

0 y

r

r

r

r

r

r

Stage_0 Stage_1 Stage_2 Stage_10

RTL Simulation

• See, https://github.com/HirokiNakahara/FPGA_lecture/tree/master/Lec7_Practical_RTL_design/

• Source Code: fir_pipe_1.v, Simulation Code: testbench_fir_pipe_1.v

Conclusion

• Conversion from Behavior to RTL by C Description
• Control HW via AXI 4 bus
• Optimization method

• Concurrent assignment
• Parallel Processing
• Unrolling
• Pipelining

Exercise
• (Mandatory) Control the LED from the ARM processor via the

AXI4 bus
• (Mandatory) For the FIR filter, discuss the Pros. and Cons. of

pipeline version, unrolling version, sequential version by
comparing latency, throughput, and # of multipliers (area)

• (Optional 1) Reduce the number of multipliers by using a
symmetry property for coefficients of an FIR filter

• (Optional 2) Design the RTL for above FIR filter and show the
simulation result

Send a report to OCW-i by PDF format
Deadline is 28th, July, 2020

