8.1.2 Optimal Gradient Method for Smooth (Differentiable) Convex Functions

In the case ;1 = 0, there are much simpler variation of the method?.

Nesterov’s Original Optimal Gradient Method for Smooth Convex Function
Step 0: Choose xg € R", set y, := xo, to := 1, and k := 0.
Step 1: Compute V f(y;.).
Step 2:  Set i1 =1y, — £V F(yp).
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Step 4: Set yp.| = Tpq1 +

Step 3:  ty41:= .
tr — 1
Tit1
Moreover, there is a simpler variant of this method.

(41 — k), k: =k + 1 and go to Step 1.

Variant of Nesterov’s Optimal Gradient Method for Smooth Convex Function
Step 0: Choose oy € R", set y, := xp and k := 1.

Step 1: Compute V f(ys_;)-

Step 2: Set xy ==y, — %Vf(yk_l).

Step 3: Set y, :=x + — (xg, — xr—1), k := k+ 1 and go to Step 1.

k+2

All of above methods generate sequence {x}7° , such that

AL|zo — x*||3

flen) — ) < = s

for f € flL’l(R").
Recently, it was shown that an extension of this method guarantee a o(k~2) convergence for
f(xr) — f(x*) by Attouch and Peypouquet®.

Kim-Fessler’s Optimal Gradient Method for Smooth Convex Function

Step 0: Choose xg € R", set y, := xo, to := 1, and k := 0.
Step 1: Compute V f(y;,).
Step 2: Set 41 =y, — %Vf(yk).

2
w’ ifhk<N—2
Step 3:  tpy = e .
BV i k=N -1
te—1

t
» (Tp41 — k) + tik(a:k“ —vy;), k:=k+ 1 and go to Step 1.

Step 4: Set yy 1 = Tp41 +
tk kt1

It can be shown that the Kim-Fessler’s method generate sequence {xy}Y_, such that

2L xo — z*|3

flex) 1) < =

for f € flL’l(R") T
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8.2 Exercises

1. We want to justify the Constant Step Scheme of the Optimal Gradient Method. This is a
particular case of the General Scheme for the Optimal Gradient Method for the following
choice:

Yey1 = Lajg = (1— o)y + agp
T QEYEVE + Ve+1Tk
F Vi + Qb
1
Tpi1 = Yp — va(yk)
(= ap)vvk + arpyy — oV F(yy)
vk Ve+1 '

a) Show that viy; =« + O%k(mkﬂ —xk).

Ap417k+1(1—o)
ar(Yet1F+oryip)”

(
(

Show that 8, = ar(l—ay)

5 .
ap+ogyl

)

b) Show that y; 1 = @1 + Be(xk+1 — @) for B =

()

(d) Explain why o, = (1 — app1)oq + Loy

9 Extension of the Optimal Gradient Method (First-Order Method,
Accelerated Gradient Method, Fast Gradient Method) for the

Min-Max Problems over Simple Closed Convex Sets

Suppose we are given @ a closed convex subset of R", simple enough to have an easy projection
onto it. E.g., positive orthant, n-dimensional box, simplex, Euclidean ball, ellipsoids, etc.
Given f; € S;’}L(Q) (i=1,2,...,m), we define the following function f: @ — R,

f(x) = max fi(x) for T eQ. (18)

This function is non-differentiable in general, but convex (see Theorem 5.6). We will see that the
method discussed so far can be easily adapted for the following min-max-type convex optimization
problem.
min.imize f(x) (19)
subject to x € Q,
where @ is a closed convex set with a simple structure, and f(x) is defined as above.
For a given & € @, let us define the following linearization of f(x) at Z.

f@z) = max [fi(z) +(Vfi(z),z—-T)], forzeQ.

1<i<m

Lemma 9.1 Let f; € S;H;(Q) (1=1,2,...,m) and ¢ € Q. For x € @, we have
=, H =112

f@) < fl@z) + o - 23
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Proof:
It follows from the properties of f; € S;i(Q) 1

Theorem 9.2 A point * € @ is an optimal solution of (19) with f; € S}LIL(Q) (i=1,2,...,m)if
and only if
fxhz) > f(x*2") = f(z¥), Ve eq.

Proof:
Indeed, if the inequality is true, it follows from Lemma 9.1 that

[@) 2 f@sa) + Sz - 27|} = fa") + Sz~ "3 2 f@), VecQ.

For the converse, let * be an optimal solution of the minimization problem (19). Assume by
contradiction that there is a € @) such that f(z*;x) < f(x¥).

Therefore, from the definition of f(-), letting j € {1,2,...,m} (which temporarily we assume is
unique) such that f;(x*) = maxi<;<m fi(x*), we have

file®) + (Vfi(x"),x —x*) < fj(x*) for i=1,2,....,m (20)
Notice that * + a(x — x*) € Q for a € [0, 1] since @ is convex. Then, calling ¢;(«) := fi(x* +
a(x — x*)), we have ¢}(0) = (V f;(x*),x —x*) for (i = 1,2,...,m). Moreover, ¢;(0) = fi(x*) <
fi@) for i = 1,2,...,m, i £ J, 6;(0) = f3(@*) = f(@*), and &(0) = (VF,(z*),@ — 2"} < 0 from
(20) for ¢ = j. Therefore, there exists @ > 0 small enough such that
¢j(a) = fij(@" + a(e —a)) < $;(0) = fi(z") = f(z7)
and
¢i(a) = filz" +a(x —x")) < fj(x®) for i =1,2,...,m, i#j.

Finally, we have f(x* + a(x —x*)) = maxi<i<m fi(z* + a(x —x*)) < fj(x*) = maxi<ij<m fi(x*) =
f(x*). Therefore, we arrived to a contradiction. In the case there exists ji, jo such that f(x*) =
fin(@®) = fi, () and f; (x* + a(x — x*)) < fj,(x* + a(x — =*)), we choose j = jo and still we
have the same conclusion. 1

Corollary 9.3 Let «* be a minimum of a max-type function f(x) over the set @ as (18). If
fie S}L(Q) (i=1,2,...,m), then

@) 2 f(@)+ Glle—a'3, vVecq.

Proof:
From Lemma 9.1 and Theorem 9.2, we have for Va € @),
* lLL *
@) > fate)+ e - a3
> fa*at)+ e - o3 = f@") + Elle - 2B,

Lemma 9.4 Let f; € S}L(Q) for (i =1,2,...,m) with g > 0 and @ be a closed convex set. Then
there is a unique solution &* for the problem (19).
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Proof:
Left for exercise. I

Definition 9.5 Let f; € C1(Q) (i =1,2,...,m), Q a closed convex set, Z € @, and v > 0.
Denote by

_ . _ 7 — 112
xp(xT;y) = a zy)+ ~|ly —
7(@57) rg min f(z;y) 2II'y 12

gp(@;y) = (@ —zp(T57)).

We call gf(iz;v) the gradient mapping of max-type function f on Q. Observe that due to
Lemma 9.4, x;(2; ) exists and it is uniquely defined.

Theorem 9.6 Let f; € SilL(Q) (1=1,2,...,m),v> L, v >0, Q a closed convex set, and & € Q.
Then

f(®) = f(zp(2:7) + (g4(;7), & — ) + Hgf( MIZ + *Hw ~ 3, Veeq.

Proof:  Let us use the following notation: x; := x;(Z;v) and g; := g;(Z;7).
From Lemma 9.1 and Corollary 9.3 (taking f(x) in there as f(&;x) + || — &||3), we have
Ve € Q,
P z12 > f(z
fl@) = Sllz -zl =2 fl@z)
_ Y _ Y _
= J@z)+ e -2l — Ll - 2l
- v - g g -
> f@ag) + 2oy - 23+ Lw - 2l - Lz - 2l
- g - e _
= f@ag)+ Loy - 2lE + 1@ - 2p, 20— 2y~ 3
_ Y _ Y- _ _
= f(zxyp)+ §||a:f —z|3+ 5(:1: —xz5,2(x— %)+ —xy)
- v _ _ 1
= f(z;zp) + §||37f -zl + (gpx—2) + %HQfH%
_ 1
> flzy)+{gpz—2)+ %Hng%?
where the last inequality is due to the fact that v > L. 1
Now, we are ready to define our estimated sequence. Assume that f; € SiIL(Q) (1=1,2,...,m)

possible with g = 0 (which means that f; € .FIL’I(Q)), xg € @, and yg > 0. Define

do@) = f(@o)+ 4z - ol
brale) = (1 anon(a) + o |Fes L) + g o DIE+ laslves D, - )
+Llle - yil3] .

for the sequences {ay}7°, and {y,}7>, which will be defined later.
Similarly to the previous subsection, we can prove that {¢(x)}72, can be written in the form

on(x) = g} + > ||w—v1c||2
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for ¢8 = f(xo), Vo = Io:

Yerr = (1 —ap)ye +arp
1
Vi1 = —[(1 — ap) vk + arppyy — arg s (Yg; L)),
V41
in = (=)o +auf (sl D)+ (5 = 225l D3
= — oy, ag ; — — :
k+1 k Yk oL 2vim g Yy 2
ap(l — o)y (1
+ S (Bl — wnl} + {9 (i L) ok — )
VEk+1

Now, ¢§ > f(xo). Assuming that ¢; > f(xx),

2
G 2 (L@ +auf(estu L) + (55 - 52 ) s D)

ag(l— ak)’7k<
Yk+1

+ 95 (Y L), vk — yy)

1 a2
> T 7)) R — > ;D)3
f(xs(yy; L)) (QL et g (yi; L)

(1 — O[k)

Yk I
SN e — g B,

(6773
+ 1-— g < aL 3
( ) gf(yk ) o

(Uk—yk)+$k—yk> +

where the last inequality follows from Theorem 9.6 for v = L.
Therefore, if we choose

xpr1 = xp(ypl),
Laj = (1—op)y + ogp,
7]{:-{-1 = LOK%,
1
Y, = ——— (W VE + Ve+12k),
F Y + Oék,u( +1%%)

we obtain ¢y, > f(xry1) as desired.
Hereafter, we assume that L > p to exclude the trivial case L = p with finished in one iteration.

Constant Step Scheme for the Optimal Gradient Method for the Min-Max
Problem
Step 0: Choose xg € Q, ag € (0,1) such that %ﬁ;“) >0, u< ao(f‘figo_“) <L,
set Yy 1= xo, k := 0.
Step 1: Compute f;(y;) and V f;(y,) (i =1,2,...,m).

Step 2:  Set wiy1 :=xf(yy; L) = arg min [ max  fi(yg) + (VFi(yr).  —yp)

Q |i=12,"m

L,
ol | — g |3

Step 3: Compute ay41 € (0,1) from the equation azﬂ =(1—ap1)a; + Fogqr.
Step 4: Set 3, = U=ax),

2
ap 0ok

Step 5: Set Yy, := Tp11 + Br(Tr41 — k), k :=k + 1 and go to Step 1.

The rate of converge of this method is exactly the same as Theorem 8.6 for vy := ap(apL —
1)/ (1 — ap), but we need to solve a convex program in Step 2 for each iteration, and it can turn
the method computationally expensive.
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9.1 Exercises

1. Prove Lemma 9.4.
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