Proof:
Left for exercise. I

Corollary 5.22 Let f be a twice continuously differentiable function. Then f € SilL(R”) if and
only if
LI = V2f(x) = pI, VxeR"
Proof:
Left for exercise. I

Theorem 5.23 If f € S;’}L(Rn), then

Loyl + IV (@) - VIw)IE < (V@) - Vi y)a— ). Yoy <R

Proof:
If 4 = L, from Theorem 5.18 and the definition of Ci(R”),

(Vi@)-Vi)a-y) > Sle—ylb+Sle -yl

W 1
> Sle—ylz+ ﬂHVf(w) - VI3,

and the result follows.
If p < L, let us define ¢(x) = f(x) — §|lz||3. Then Vo(x) = Vf(x) — px and (V(x) —

Vo(y),z—y) = (VF(z) - VI(y),z—y) - ple—y[§ < (L-pz—y|lj since f € C;'(R"). Also
(Vo(x) — Vo(y),z —y) > ul|lz — yl|3 — u/lz — y||3 = 0 due to Theorem 5.18. Therefore, from
Theorem 5.13, ¢ € flL’iu(R").

We have now (Vo (x)-Vo(y),z—y) > ﬁ”Vqﬁ(az) —V(y)||3 from Theorem 5.13. Therefore

1

(V@) -Vf(y),z—y) > ple—yls+ mllVf(-’B) ~Vf(y) —pz -yl
= e —yl3+ V@) - V)L - (V@) - VE).e - y)
K 2T T 1 27 1 )
2
7
-yl
and the result follows after some simplifications. I
5.5 Extended Real-Valued Functions
Only at this subsection, we adopt the following rule:
0-00o=00-0=0-(—00) =(—00)-0=0. (10)

Definition 5.24 A function that can take values —oo or +oo is called an extended real-valued
function. That is f: R™ — [—o00, +00]. We can also denote [—00,+00] by RU {+oc}. The domain
of this function is defined by the set dom(f) = {x € R" | f(x) < +o0}.

Example 5.25 For an arbitrary set S C R", the indicator function of S is defined by the following
extended real-valued function:

0, x€S,
55(””):{ t+oo, T&S.
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Definition 5.26 A function f: R" — [—o0, +0o0] is called proper if it does not attain the value —oo
and dom(f) # (). This function is called closed if its epigraph is a closed set.

Definition 5.27 A function f: R" — [—o00, +00] is called lower semicontinuous at « € R if
f(z) <lim inf f(z,)
n—oo

for any sequence {x,}°°; for which x,, — x. Therefore, a function f: R" — [—o00, +00] is called
lower semicontinous if it is lower semicontinuous at each point of R".

Theorem 5.28 Let f: R" — [—o00, +00]. Then the following conditions are equivalent:
1. f is lower semicontinuous.
2. f is closed.
3. For any A € R, the A-level sets Ly of f (see Theorem 5.3) are closed.

Proof:

We need to show that the epigraph E of f is closed. Let {x,, yn 52, a sequence of R" xR
such that (x,,y,) € F for any n > 1 and (@, y,) — (Z,7). Then f(x,) < y, and taking the limit
inferior on both sides of the inequality:

f(@) <l inf f(w,) <lim inf y, =7,

which shows that (z,y) € E.

If L) = (), there is nothing to do. Therefore, suppose that theres is sequence {x,, }5°; C Ly
that converges to . That is f(x,) < A and since the epigraph of f is closed, (Z,A) € E, and
therefore, f(Z) < A\ which implies that & € Lj.

Suppose to the contrary that f is not lower semicontinuous. That is, there exists &, a
sequence {x,}2°; such that , — &, and lim nlggo f(xn) < f(2). Consider A € R such that

lim inf f(z,) <A < f(2). (11)

Therefore, we can consider a subsequence {x,, }32, such that f(x,,) < A and then ,, € L. Since
the A-level sets are closed, ¢, — & € Ly and f(&) < A contradicting (11). 1

Definition 5.29 An extended real-valued function f: R" — [—o00,400] is called convez if its epi-
graph is a convex set.

Therefore, we can show that a proper extended real-valued function is a convex function if and
only if it satisfies the condition for usual functions (Definition 5.1) using the rule (10).

Theorem 5.30

1. Let fi: R" — [—o00,+00] (i € I) be a family of (finite or infinite) extended real-valued functions

which are closed and convex. Then the function f(x) := sup f;(x) is also closed and convex.
el

2. Let fi: R" — [—o0,+00] (1 < i < m) be a family of finite extended real-valued functions

which are closed and convex, and a1, g, ...,y > 0. Then the function f(z) = > 7", o fi(x)
is also closed and convex.

3. If f: R™ — [—00, +00] is an extended real-valued function which is closed and convex, b € R™,
and A € R™ " then ¢(x) := f(Ax + b) is also a closed and convex function.

Proof:
Left for exercise. ]
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5.6

1.

10.

11.

12.

13.

14.

Exercises

Given a convex set S C R" and an arbitrarily norm || - || in R", define the distance of a point
x € R" to the set S as
dist(zx, S) := inf ||z — y|.
(@.5) =t |}z -y

Show that the distance function dist(x, S) is convex on x.

. Give an example of a function f: R — R and a nonempty set C' C R illustrating each of the

following facts:

(a) fis non convex on R, C is convex, and f is convex on C.

(b) f is non convex on R, C' is non convex, and f is convex on C.

. Prove Theorem 5.5.

. Show that for x1,x2,...,x, > 0 the inequality

is valid. Moreover, if aq, @, ..., o, > 0is such that )" ; o = 1, then show that

n n
E Ty > Hmf‘l
i=1 =1

. For any s,t > 0 and p, q > 1 satisfying 1% + % =1, show that

sP 9
st < — 4+ —.
p q

. Prove Theorem 5.7.

Prove Theorem 5.8.

. Prove Lemma 5.9.

. Prove Corollary 5.12.

Prove Corollary 5.17.
Prove Theorem 5.18.
Prove Theorem 5.21.
Prove Corollary 5.22.

Prove Theorem 5.30.

6 Worse Case Analysis for Gradient Based Methods

6.1

Lower Complexity Bound for the class ;' (R")
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Gradient Based Method: Iterative method M generated by a sequence such that

@ € xo + span{V f(x9), Vf(x1),..., Vf(xr—1)}, k=>1.

Consider the problem class as follows

min
xecR"” /(=)
Model:
feF R

Oracle: Only function and gradient values are available
Approximate solution: | Find & € R" such that f(&) — f(x*) < e

Theorem 6.1 For any 1 < k < "T_l, and any xo € R", there exists a function f € F;~ 1(R”) such
that for any gradient based method of type M, we have

‘ L]z — *|3
flzr) — f(z*) > W’

v

1
i — 2|3 gllwo — "2,

where z* is the minimum of f(x).

Proof:

This type of methods are invariant with respect to a simultaneous shift of all objects in the
space of variables. Therefore, we can assume that xy = 0.

Consider the family of quadratic functions

I k-1
fk’(m) = { + Z—l—l 2"_[%]% _[m]l}a k:1727 y
2:1
We can see that
for k=1, fi(zx)=%([=]] - [z]1),
for k=2, fo(x) = (=]} + [«]3 — [z]1 [2]2 — [x])
for k=3, fs(a)=¢([]] +[=]3 + [z]3 — [« [m] - [alafal; — [])
Therefore, fy(z) = % [3(Ayx, ) — (€1, x)], where e; = (1,0,...,0)”, and
2 -1 0 e 0
-1 2 —1 0
A, — 0 -1 2 0 Ok n—k
4
0 0 -1 2
On—k,k Onfk,nfk

Also, Vfi(z) = L(Ayz — e1) and V2 ) (z) = £ Ay, After some calculations, we can show that
LI = V2f,(x) = O for k = 1,2,...,n, and therefore, fi(x) € on’l(]R”), for k =1,2,...,n, due
to Corollary 5.12.

Then
L
= - (4. 1
Ju(Tx) 8< +k:+1)
- 1— ey i=1,2,...k
L ) i=k+1,k+2,...,n,
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are the minimum value and the minimal solution for fi(-), respectively.

Now, for 1 < k < 251 let us define f(x) := for41(), and therefore @* := Tap 7.

Note that x; € xo + span{V f(xo), Vf(x1),...,Vf(xp_1)} for £y = 0. Moreover, since
V(@) = L(Awx — e1), [z4], = 0 for p > k. Therefore, f,(z) = fi(xy) for p > k.

Then fork:1,2,...,L”T_1J,

f(xr) — f(x") = forrr(®r) — forr1(@arg1) = fr(Tr) — é( 1+ L >

2k + 2
L 1 L 1
= fk(wk)_8<_1+2k+2>_8< ) <_ 2k+2>
L
-~ 16(k+1)°

We can obtain after some calculations,

2k+1 ; 2
* (|12 —2
— = — = 1—
||€130 & H2 ||330 $2k+1||2 ;—1 ( 2/~c+2>

9 2k+1 1 2k+1
= 2%l S i 2
* 2k+2;l+(2k+2)2;z

3
op 1 22ET2)@h+1) | (2k+1+1)

IN

(2k +2)2 3(2k + 2)2
< 2(k + 1).
- 3
Then
flew—f) L 3
o —x*||2 ~ 16(k+1)2(k+1)
Also

2U%t+1 2k+1 i 2
ok — a5 = lze — Bl > D (@arral)® = ) (1‘ )

i=k+1 i=k+1 2k + 2
a2 [@EE2)@k+1) (ke DE] Qkf
N 2k + 2 2 2 2k+2 2

i=k+1

v

1 1
g”ifo - C10219+1||% = g”mo - 33*”%-

1
If we consider very large problems where we can not afford n number of iterations, the above
theorem says that:

e The function value can be expected to decrease fast.

e The convergence to the optimal solution x* can be arbitrarily slow.

6.2 Lower Complexity Bound for the class SZOLI (0%)
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Gradient Based Method: Iterative method M generated by a sequence such that

@ € xo + span{V f(x9), Vf(x1),..., Vf(xr—1)}, k=>1.

Let us define
2= {{wz}?l

Consider the problem class as follows

o
Zx$<oo}.
=1

Model: min f(x)
xe?

fessi?
Oracle: Only function and gradient values are available

=\ *
Approximate solution: | Find & € R™ such that fgcc) *f(gw ) <e
|z —z*[5<e

Theorem 6.2 For any xy € ¢2, there exists a function f € SZO}:l (¢%) such that for any gradient
based method of type M, we have

2k
me
flxg) — flx*) > g(%) o — x*||3,
2k
/L/u—1
e — 2*))5 > (%) @ — 2|3,

where x* is the minimum of f(x).

Proof:

This type of methods are invariant with respect to a simultaneous shift of all objects in the
space of variables. Therefore, we can assume that o = {0}72;.

Consider the following quadratic function

() = HEE= D) {[mﬁ £ ([ — [@li)? - 2[%]1} + £lal}

Then

L/ip—1 L/ip—1
V(@) = <M</Z> Al MI) . u</5>
where A is the same tridiagonal matrix defined in Theorem 6.1, but with infinite dimension and
e € % is a vector where only the first element is one.
After some calculations, we can show that uI < V2f(x) < LI and therefore, f(x) € SZOLI (%),
due to Corollary 5.22.
The minimal optimal solution of this function is:

i
- L/p—1
("] :=q"' = VEpr=1 . i=1,2,...
VL/p+1
Then
e 00 ' q2
2o — w*H% = Z[w*ﬁ = qu = 1_7(]2
i=1 i=1
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