9. Inlight of Theorem 4.21, show that under Assumption 4.20, if we want to obtain ||x; —x*||2 <
g, we need an order of In(Ine~1) iterations for the Newton method.

10. In the Section 4.4.3, show that L, = {d¢,d1,...,0k_1}.
11. In the same section, arrive at the expression (9) for a strictly convex quadratic function.
12. Show that the secant equation is valid for BFGS, DFP and symmetric-rank-one formulae.

13. Given u,v € R" and a non-singular matrix M € R™ " _if 1+vT M ~!u # 0, then the following
formula is valid:

M uvT M1

M+u )y t=pm - —
( ) 1+ vTM tu

(Sherman-Morrison formula)

Apply this formula to compute the inverses By of Hyy1 for BFGS, DFP and symmetric-
rank-one formulae.

14. Apply the quasi-Newton method with BFGS, DFP, and Symmetric-Rank-One updates for the
strictly convex function f(z) = a + (a,z) + 5 (Az, ) with A = O.

5 Convex Functions and Extended Real-Valued Functions

5.1 Convex Functions

Definition 5.1 Let @ be a subset of R". We denote by ]:k(Q) the class of functions f: R" — R
with the following properties:

e Any f e F k(Q) is k times continuously differentiable on Q);

e fis convex on @, i.e., given Va,y € Q and Va € [0, 1],

flaz+ (1 —a)y) <af(z)+ (1—a)f(y).

Theorem 5.2 f € F(R") if and only if its epigraph E := {(,y) € R"" | f(z) <y} is a convex.

Proof:
Let (x1,y1), (x2,y2) € E. Then for any 0 < a < 1, we have

flazr + (1 —a)zs) < af (@) + (1 —a)f(z2) < ayr + (1 — )y
and therefore (a1 + (1 — @)@, ayt + (1 — a)yn) € E.
Let (1, f(21)), (€2, f(22)) € E. By the convexity of E, for any 0 < a < 1,
flaxy + (1 — a)ms) < af(z1) + (1 — a)f(z2)
and therefore, f € F(R™). .

Theorem 5.3 If f € F(R"), then its A-level set Ly := {x € R" | f(x) < A} is convex for each
A € R. But the converse is not true.

Proof:

For any A € R, let ¢,y € Ly. Then for Vo € (0,1), since f € F(R"), flax + (1 — a)y) <
af(x)+ (1 —a)f(y) < ar+ (1 —a)X = A. Therefore, ax + (1 — o)y € L.

For the converse, Ly = {z € R | f(z) = 3 < A} is convex for all A € R, but f ¢ F(R). 1
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Example 5.4 The function — log z is convex on (0, +00). Let a,b € (0,+00) and 0 < 6 < 1. Then,
from the definition of the convexity, we have

—log(fa + (1 — 0)b) < —Ologa — (1 — 0) logb.
If we take the exponential of both sides, we obtain
a’b' =% < fa + (1 - 0)b.

. . . . . a+b
For 6 = %, we have the arithmetic-geometric mean inequality: vab < —

Let ,y € R"\{0}, p > 1, and ¢ such that % + % = 1. Consider

B | A ) N Iy Py
Slalir Sl '
Then we have . N
|[]s[P |[y]:]? < i Jlyhl”
SIICEHN I Y HCH B S IS D S P

and summing over i, we obtain the Holder inequality:

{2, 9)| < l=lpllyllq

P

where ||z||, := (Z H“’]Z|p>
i=1

Theorem 5.5 (Jensen’s inequality) A function f: R"™ — R is convex if and only if for any
positive integer m, the following condition is valid

n
T, T2,..., Ly €ER
a17a27-"704m20

m = f aizi | <> aif(x).
i1

Proof:
Left for exercise. ]

Theorem 5.6 Let {f;}icr be a family of (finite or infinite) functions which are bounded from above
and f; € F(R"™). Then, f(x) := sup fi(x) is convex on R".
el

Proof:
For each i € I, since f; € F(R"), its epigraph E; = {(z,y) € R"™! | fi(x) < y} is convex on
R™ ! by Theorem 5.2. Also their intersection

ﬂEi = ﬂ {(m,y) c Rl | fi(x) < y} = {(a:,y) c R+

i€l i€l

ap 0 <)

i€l
is convex by Exercise 2 of Section 1, which is exactly the epigraph of f(x). 1
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5.2 Differentiable Convex Functions

Theorem 5.7 Let f be a continuously differentiable function. The following conditions are equiv-
alent:

1. feFY(RM).
2. fly) = f(z) +(Vf(z),y —z), VYo,yeR™
3. (Vf(x) - Vf(y),z—y) =0, Ve,y € R".

Proof:
Left for exercise. 1

Theorem 5.8 (First-order sufficient optimality condition) If f € F'(R") and V f(x*) = 0,
then x* is the global minimum of f(x) on R".

Proof:
Left for exercise. ]

Lemma 5.9 If f ¢ F1(R™), b€ R™, and A: R" — R™, then
d(x) = f(Axz +b) € FL(R").

Proof:
Left for exercise. ]

Example 5.10 The following functions are differentiable and convex:
1. f(z

2. f(x) =z, p>1

x 1+\x\

)=
fla) =
flx) =
4. f(z) = || — In(1 + |z|)
f(zx) = Z a;+(a;,T)
f®) =

T
x) = Kai ) = bifP, p>1

Theorem 5.11 Let f be a twice continuously differentiable function. Then f € F2(R") if and only

if
Vif(x) = O, VxcR"
Proof:
Let f € F%(R"), and denote &, = « + 75, 7 > 0. Then, from the previous result
1 1
0 <= S (Vfzr) - V(@) 2 —a) = (Vf(xr) - Vf(z)s)
1 T
= / (V2f(x + \s)s, s)d\
T Jo
_ F(r) - F(0)
N T
where F(7) = [; (V?f(z+\s)s, s)d\. Therefore, tending 7 to 0, we get 0 < F'(0) = (V> f(x)s, s),

and we have the result.
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Conversely, Vo € R",

1 T
f@) = f@)+(VF@)y- o)+ / / (V2f(z + Ay — ) (y — z),y — x)dAdr
> f(@)+ (V) - ).

5.3 Differentiable Convex Functions with Lipschitz Continuous Gradients

Corollary 5.12 Let f be a two times continuously differentiable function. f € f%l(R") if and
only if O < V2f(x) < LI, VYx cR".

Proof:
Left for exercise. 1

Theorem 5.13 Let f be a continuously differentiable function on R", x,y € R", and « € [0, 1].
Then the following conditions are equivalent:

1. feF (R,

2. 0< f(y) — f(x) — (Vf(=),y — =) < &z -yl
3. f(@) +(Vf(x),y — =) + 57| VF(z) = V)3 < fy)
1 0< HVF@) - Vi3 < (Vi) - Vi) -y).

5. 0<(Vf(x) - Vf(y),z—y) < Llz—yl3

6. flaz+ (1 —a)y) + G2 V(@) - V() < af(@) + (1-a)f(y).
7. 0<af(@)+(1-a)f(y) - flaz+ (1-a)y) <al— )|z - y|3
Proof:

It follows from Lemmas 5.7 and 3.6.
Fix € R", and consider the function ¢(y) = f(y) — (Vf(x),y). Clearly ¢(y) satisfies

2. Also, y* = x is a minimal solution. Therefore from 2,

L 2

@) = o) <o (v- Vo)) <o)+ 5 | Vo) +(Voly).~1 Vo)

2
1 1 1
= o)+ 57 1IVeWlz - £ 1VeWllz = () - 57 [IVow)I.
Since Vo (y) = Vf(y) — V f(x), finally we have

F(@) ~ (Vf(@).2) < fy) ~ (VF@).9) ~ 5 |VFy) - VI3

Adding two copies of 3 with « and y interchanged, we obtain 4.

Applying the Cauchy-Schwarz inequality to 4, we obtain ||V f(x)—V f(y)|l2 < L||z—y||2.
Also from Theorem 5.7, f(x) is convex.
2=5| Adding two copies of 2 with  and y interchanged, we obtain 5.

5=2

1
fy) - (@) — (Vi@)y—=z) = /0 (VF(@+7(y — @) — VF@),y - z)dr

IN

! 2 L 2
| 7ty ==lBir = Sy -l
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The non-negativity follows from Theorem 5.7.
[3=6] Denote &, = az + (1 — )y. From 3,

fl®) = f(®a) +(Vf(xa), (1-a)(x—y))+ %IIVJ“(%) ~ V(a3

) > f@a)+ (VF@a)aly @) + 5r |V F) ~ Viwa)l

Multiplying the first inequality by «, the second by 1 — «, and summing up, we have

« 1

af(@)+ (1 -a)f(y) > f(xa) + 5 IV f(@) = VF(@a)ll3 +

o IV F@) = V@)

Finally, using the inequality
alb—d| + (1 - a)le —d[3 > a(l —a)|lb - ¢
we have the result.

—a(l-a)[[b—cll3 > —a(l = a)(||b - d|2 + [[c — d||)3
Therefore

alb—dll5+ (1 - a)|lc—d|l3 — a(l —a)(|b—dl2 + [lc — d]]2)?
= (allb—dl2 — (1 —a)c—d[2)* >0

Dividing both sides by 1 — a and tending « to 1, we obtain 3.
m Denoting again x, = ax + (1 — a)y, from 2,

f@) < flwa) +(VH@). (- a)e —y)) + o0 - afle -y}

) < F@a)+ (Vi@a).aly @)+ 5oz — g3

Multiplying the first inequality by «, the second by 1 — «, and summing up, we have

L

af(@)+(1-a)f(y) < f(®@a) + 5 (a(l = )’ + (1 - a)a®) [l - ylf3.

The non-negativity follows from Theorem 5.7.
Dividing both sides by 1 — a and tending « to 1, we obtain 2. The non-negativity follows
from Theorem 5.7. ]

5.4 Differentiable Strongly Convex Functions

Definition 5.14 A continuously differentiable function f: R® — R is called strongly convex on R™
(notation f € S}L(Rn)) if there exists a constant p > 0 such that

1
The constant p is called the convezity parameter of the function f.

Example 5.15 The following functions are some examples of strongly convex functions:
L f(z) = 5ll=3-

2. f(®) =a+(a,z)+ 3(Az,x), for A= pI, p>0.

28



3. |z| (Although this function is not differentiable at 0 € R, it is strongly convex only at the
same point).

4. A sum of a convex and a strongly convex functions.

5. LASSO (Least Absolute Shrinkage and Selection Operator) with rank(A) = n: ||Az — b||3 +
A|lz]|1 and A > 0 (notice that this function is also not differentiable at 0 € R™).

6. The fo-regularized logistic regression function f(zx) = log(1 + exp(—(a,x))) + Al|z[%, A > 0,
which is a sum of a convex function and a strongly convex function.

Remark 5.16 Strongly convex functions are different from strictly convex functions. For instance,
f(x) = z* is strictly convex at x = 0 but it is not strongly convex at the same point.

Corollary 5.17 If f € S}L(Rn) and V f(x*) = 0, then

1
f@) > f(@) + sl —a*3 VzeR™

Proof:
Left for exercise. 1

Theorem 5.18 Let f be a continuously differentiable function. The following conditions are equiv-
alent:

1. feSLRY.
3. flax+ (1-a)y) +a(l —a)flle —yl3 < af(z) + (1 —a)f(y), Yo,y €R", Ya € [0,1].

Proof:
Left for exercise. I

Theorem 5.19 If f € S}L(R”), we have
L f(y) < f(®) + (Vf(@),y — ) + 5, | Vf(@) - VI, Yo,y €R",

2. (Vf(z) - Vf(y).z —y) < ,[IVF(x) - VI3, Yo,y € R".

Proof:
Let us fix * € R", and define the function ¢(y) = f(y) — (Vf(x),y). Clearly, ¢ € Si(R”).
Also, one minimal solution is @. Therefore,

o . . H _ 2
o(x) = Urgfélngb(”)zvﬁﬁﬁt ¢(y) +(Vo(y),v —y) + S llv -yl

- ¢<y>—21uuv¢<y>||%

as wished. Adding two copies of the 1 with & and y interchanged, we get 2. 1

Remark 5.20 The converse of Theorem 5.19 is not valid. For instance, consider f(z1,z2) = 23 —23,
@ = 1. Then the inequalities 1. and 2. are satisfied but f ¢ S}L(RQ) for any p > 0.

Theorem 5.21 Let f be a twice continuously differentiable function. Then f € SZ(]R”) if and only

if
V2f(x) = pI, YxeR™
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