
9. In light of Theorem 4.21, show that under Assumption 4.20, if we want to obtain ∥xk−x∗∥2 <
ε, we need an order of ln(ln ε−1) iterations for the Newton method.

10. In the Section 4.4.3, show that Lk = {δ0, δ1, . . . , δk−1}.

11. In the same section, arrive at the expression (9) for a strictly convex quadratic function.

12. Show that the secant equation is valid for BFGS, DFP and symmetric-rank-one formulae.

13. Given u,v ∈ Rn and a non-singular matrix M ∈ Rn×n, if 1+vTM−1u ̸= 0, then the following
formula is valid:

(M + uvT )−1 = M−1 − M−1uvTM−1

1 + vTM−1u
. (Sherman-Morrison formula)

Apply this formula to compute the inverses Bk+1 of Hk+1 for BFGS, DFP and symmetric-
rank-one formulae.

14. Apply the quasi-Newton method with BFGS, DFP, and Symmetric-Rank-One updates for the
strictly convex function f(x) = α+ ⟨a,x⟩+ 1

2⟨Ax,x⟩ with A ≻ O.

5 Convex Functions and Extended Real-Valued Functions

5.1 Convex Functions

Definition 5.1 Let Q be a subset of Rn. We denote by Fk(Q) the class of functions f : Rn → R
with the following properties:

• Any f ∈ Fk(Q) is k times continuously differentiable on Q;

• f is convex on Q, i.e., given ∀x,y ∈ Q and ∀α ∈ [0, 1],

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

Theorem 5.2 f ∈ F(Rn) if and only if its epigraph E := {(x, y) ∈ Rn+1 | f(x) ≤ y} is a convex.

Proof:
⇒ Let (x1, y1), (x2, y2) ∈ E. Then for any 0 ≤ α ≤ 1, we have

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) ≤ αy1 + (1− α)y2

and therefore (αx1 + (1− α)x2, αy1 + (1− α)y2) ∈ E.
⇐ Let (x1, f(x1)), (x2, f(x2)) ∈ E. By the convexity of E, for any 0 ≤ α ≤ 1,

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

and therefore, f ∈ F(Rn).

Theorem 5.3 If f ∈ F(Rn), then its λ-level set Lλ := {x ∈ Rn | f(x) ≤ λ} is convex for each
λ ∈ R. But the converse is not true.

Proof:
For any λ ∈ R, let x,y ∈ Lλ. Then for ∀α ∈ (0, 1), since f ∈ F(Rn), f(αx + (1 − α)y) ≤

αf(x) + (1− α)f(y) ≤ αλ+ (1− α)λ = λ. Therefore, αx+ (1− α)y ∈ Lλ.
For the converse, Lλ = {x ∈ R | f(x) = x3 ≤ λ} is convex for all λ ∈ R, but f ̸∈ F(R).
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Example 5.4 The function − log x is convex on (0,+∞). Let a, b ∈ (0,+∞) and 0 ≤ θ ≤ 1. Then,
from the definition of the convexity, we have

− log(θa+ (1− θ)b) ≤ −θ log a− (1− θ) log b.

If we take the exponential of both sides, we obtain

aθb1−θ ≤ θa+ (1− θ)b.

For θ = 1
2 , we have the arithmetic-geometric mean inequality:

√
ab ≤ a+ b

2
.

Let x,y ∈ Rn\{0}, p > 1, and q such that 1
p + 1

q = 1. Consider

a =
|[x]i|p
n∑

j=1

|[x]j |p
, b =

|[y]i|q
n∑

j=1

|[y]j |q
, θ =

1

p
, and (1− θ) =

1

q
.

Then we have 
|[x]i|p
n∑

j=1

|[x]j |p



1
p


|[y]i|q
n∑

j=1

|[y]j |q



1
q

≤ |[x]i|p

p
n∑

j=1

|[x]j |p
+

|[y]i|q

q
n∑

j=1

|[y]j |q
.

and summing over i, we obtain the Hölder inequality:

|⟨x,y⟩| ≤ ∥x∥p∥y∥q

where ∥x∥p :=

(
n∑

i=1

|[x]i|p
) 1

p

.

Theorem 5.5 (Jensen’s inequality) A function f : Rn → R is convex if and only if for any
positive integer m, the following condition is valid

x1,x2, . . . ,xm ∈ Rn

α1, α2, . . . , αm ≥ 0
m∑
i=1

αi = 1

⇒ f

(
m∑
i=1

αixi

)
≤

m∑
i=1

αif(xi).

Proof:
Left for exercise.

Theorem 5.6 Let {fi}i∈I be a family of (finite or infinite) functions which are bounded from above
and fi ∈ F(Rn). Then, f(x) := sup

i∈I
fi(x) is convex on Rn.

Proof:
For each i ∈ I, since fi ∈ F(Rn), its epigraph Ei = {(x, y) ∈ Rn+1 | fi(x) ≤ y} is convex on

Rn+1 by Theorem 5.2. Also their intersection∩
i∈I

Ei =
∩
i∈I

{
(x, y) ∈ Rn+1 | fi(x) ≤ y

}
=

{
(x, y) ∈ Rn+1

∣∣∣∣ sup
i∈I

fi(x) ≤ y

}
is convex by Exercise 2 of Section 1, which is exactly the epigraph of f(x).
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5.2 Differentiable Convex Functions

Theorem 5.7 Let f be a continuously differentiable function. The following conditions are equiv-
alent:

1. f ∈ F1(Rn).

2. f(y) ≥ f(x) + ⟨∇f(x),y − x⟩, ∀x,y ∈ Rn.

3. ⟨∇f(x)−∇f(y),x− y⟩ ≥ 0, ∀x,y ∈ Rn.

Proof:
Left for exercise.

Theorem 5.8 (First-order sufficient optimality condition) If f ∈ F1(Rn) and ∇f(x∗) = 0,
then x∗ is the global minimum of f(x) on Rn.

Proof:
Left for exercise.

Lemma 5.9 If f ∈ F1(Rm), b ∈ Rm, and A: Rn → Rm, then

ϕ(x) = f(Ax+ b) ∈ F1(Rn).

Proof:
Left for exercise.

Example 5.10 The following functions are differentiable and convex:

1. f(x) = ex

2. f(x) = |x|p, p > 1

3. f(x) = x2

1+|x|

4. f(x) = |x| − ln(1 + |x|)

5. f(x) =
∑m

i=1 e
αi+⟨ai,x⟩

6. f(x) =
∑m

i=1 |⟨ai,x⟩ − bi|p, p > 1

Theorem 5.11 Let f be a twice continuously differentiable function. Then f ∈ F2(Rn) if and only
if

∇2f(x) ⪰ O, ∀x ∈ Rn.

Proof:
Let f ∈ F2(Rn), and denote xτ = x+ τs, τ > 0. Then, from the previous result

0 ≤ 1

τ2
⟨∇f(xτ )−∇f(x),xτ − x⟩ = 1

τ
⟨∇f(xτ )−∇f(x), s⟩

=
1

τ

∫ τ

0
⟨∇2f(x+ λs)s, s⟩dλ

=
F (τ)− F (0)

τ

where F (τ) =
∫ τ
0 ⟨∇

2f(x+λs)s, s⟩dλ. Therefore, tending τ to 0, we get 0 ≤ F ′(0) = ⟨∇2f(x)s, s⟩,
and we have the result.
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Conversely, ∀x ∈ Rn,

f(y) = f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0

∫ τ

0
⟨∇2f(x+ λ(y − x))(y − x),y − x⟩dλdτ

≥ f(x) + ⟨∇f(x),y − x⟩.

5.3 Differentiable Convex Functions with Lipschitz Continuous Gradients

Corollary 5.12 Let f be a two times continuously differentiable function. f ∈ F2,1
L (Rn) if and

only if O ⪯ ∇2f(x) ⪯ LI, ∀x ∈ Rn.

Proof:
Left for exercise.

Theorem 5.13 Let f be a continuously differentiable function on Rn, x,y ∈ Rn, and α ∈ [0, 1].
Then the following conditions are equivalent:

1. f ∈ F1,1
L (Rn).

2. 0 ≤ f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ L
2 ∥x− y∥22.

3. f(x) + ⟨∇f(x),y − x⟩+ 1
2L∥∇f(x)−∇f(y)∥22 ≤ f(y).

4. 0 ≤ 1
L∥∇f(x)−∇f(y)∥22 ≤ ⟨∇f(x)−∇f(y),x− y⟩.

5. 0 ≤ ⟨∇f(x)−∇f(y),x− y⟩ ≤ L∥x− y∥22.

6. f(αx+ (1− α)y) + α(1−α)
2L ∥∇f(x)−∇f(y)∥22 ≤ αf(x) + (1− α)f(y).

7. 0 ≤ αf(x) + (1− α)f(y)− f(αx+ (1− α)y) ≤ α(1− α)L2 ∥x− y∥22.

Proof:
1⇒2 It follows from Lemmas 5.7 and 3.6.

2⇒3 Fix x ∈ Rn, and consider the function ϕ(y) = f(y)− ⟨∇f(x),y⟩. Clearly ϕ(y) satisfies
2. Also, y∗ = x is a minimal solution. Therefore from 2,

ϕ(x) = ϕ(y∗) ≤ ϕ

(
y − 1

L
∇ϕ(y)

)
≤ ϕ(y) +

L

2

∥∥∥∥ 1L∇ϕ(y)

∥∥∥∥2
2

+ ⟨∇ϕ(y),− 1

L
∇ϕ(y)⟩

= ϕ(y) +
1

2L
∥∇ϕ(y)∥22 −

1

L
∥∇ϕ(y)∥22 = ϕ(y)− 1

2L
∥∇ϕ(y)∥22.

Since ∇ϕ(y) = ∇f(y)−∇f(x), finally we have

f(x)− ⟨∇f(x),x⟩ ≤ f(y)− ⟨∇f(x),y⟩ − 1

2L
∥∇f(y)−∇f(x)∥22.

3⇒4 Adding two copies of 3 with x and y interchanged, we obtain 4.

4⇒1 Applying the Cauchy-Schwarz inequality to 4, we obtain ∥∇f(x)−∇f(y)∥2 ≤ L∥x−y∥2.
Also from Theorem 5.7, f(x) is convex.

2⇒5 Adding two copies of 2 with x and y interchanged, we obtain 5.

5⇒2

f(y)− f(x)− ⟨∇f(x),y − x⟩ =

∫ 1

0
⟨∇f(x+ τ(y − x))−∇f(x),y − x⟩dτ

≤
∫ 1

0
τL∥y − x∥22dτ =

L

2
∥y − x∥22.
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The non-negativity follows from Theorem 5.7.
3⇒6 Denote xα = αx+ (1− α)y. From 3,

f(x) ≥ f(xα) + ⟨∇f(xα), (1− α)(x− y)⟩+ 1

2L
∥∇f(x)−∇f(xα)∥22

f(y) ≥ f(xα) + ⟨∇f(xα), α(y − x)⟩+ 1

2L
∥∇f(y)−∇f(xα)∥22.

Multiplying the first inequality by α, the second by 1− α, and summing up, we have

αf(x) + (1− α)f(y) ≥ f(xα) +
α

2L
∥∇f(x)−∇f(xα)∥22 +

1− α

2L
∥∇f(y)−∇f(xα)∥22.

Finally, using the inequality

α∥b− d∥22 + (1− α)∥c− d∥22 ≥ α(1− α)∥b− c∥22

we have the result.
−α(1− α)∥b− c∥22 ≥ −α(1− α)(∥b− d∥2 + ∥c− d∥)22
Therefore
α∥b− d∥22 + (1− α)∥c− d∥22 − α(1− α)(∥b− d∥2 + ∥c− d∥2)2
= (α∥b− d∥2 − (1− α)∥c− d∥2)2 ≥ 0


6⇒3 Dividing both sides by 1− α and tending α to 1, we obtain 3.

2⇒7 Denoting again xα = αx+ (1− α)y, from 2,

f(x) ≤ f(xα) + ⟨∇f(xα), (1− α)(x− y)⟩+ L

2
(1− α)2∥x− y∥22

f(y) ≤ f(xα) + ⟨∇f(xα), α(y − x)⟩+ L

2
α2∥x− y∥22

Multiplying the first inequality by α, the second by 1− α, and summing up, we have

αf(x) + (1− α)f(y) ≤ f(xα) +
L

2

(
α(1− α)2 + (1− α)α2

)
∥x− y∥22.

The non-negativity follows from Theorem 5.7.
7⇒2 Dividing both sides by 1−α and tending α to 1, we obtain 2. The non-negativity follows

from Theorem 5.7.

5.4 Differentiable Strongly Convex Functions

Definition 5.14 A continuously differentiable function f : Rn → R is called strongly convex on Rn

(notation f ∈ S1
µ(Rn)) if there exists a constant µ > 0 such that

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ 1

2
µ∥y − x∥22, ∀x,y ∈ Rn.

The constant µ is called the convexity parameter of the function f .

Example 5.15 The following functions are some examples of strongly convex functions:

1. f(x) = 1
2∥x∥

2
2.

2. f(x) = α+ ⟨a,x⟩+ 1
2⟨Ax,x⟩, for A ⪰ µI, µ > 0.
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3. |x| (Although this function is not differentiable at 0 ∈ R, it is strongly convex only at the
same point).

4. A sum of a convex and a strongly convex functions.

5. LASSO (Least Absolute Shrinkage and Selection Operator) with rank(A) = n: ∥Ax− b∥22 +
λ∥x∥1 and λ > 0 (notice that this function is also not differentiable at 0 ∈ Rn).

6. The ℓ2-regularized logistic regression function f(x) = log(1 + exp(−⟨a,x⟩)) + λ∥x∥22, λ > 0,
which is a sum of a convex function and a strongly convex function.

Remark 5.16 Strongly convex functions are different from strictly convex functions. For instance,
f(x) = x4 is strictly convex at x = 0 but it is not strongly convex at the same point.

Corollary 5.17 If f ∈ S1
µ(Rn) and ∇f(x∗) = 0, then

f(x) ≥ f(x∗) +
1

2
µ∥x− x∗∥22, ∀x ∈ Rn.

Proof:
Left for exercise.

Theorem 5.18 Let f be a continuously differentiable function. The following conditions are equiv-
alent:

1. f ∈ S1
µ(Rn).

2. µ∥x− y∥22 ≤ ⟨∇f(x)−∇f(y),x− y⟩, ∀x,y ∈ Rn.

3. f(αx+ (1− α)y) + α(1− α)µ2∥x− y∥22 ≤ αf(x) + (1− α)f(y), ∀x,y ∈ Rn, ∀α ∈ [0, 1].

Proof:
Left for exercise.

Theorem 5.19 If f ∈ S1
µ(Rn), we have

1. f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ 1
2µ∥∇f(x)−∇f(y)∥22, ∀x,y ∈ Rn,

2. ⟨∇f(x)−∇f(y),x− y⟩ ≤ 1
µ∥∇f(x)−∇f(y)∥22, ∀x,y ∈ Rn.

Proof:
Let us fix x ∈ Rn, and define the function ϕ(y) = f(y) − ⟨∇f(x),y⟩. Clearly, ϕ ∈ S1

µ(Rn).
Also, one minimal solution is x. Therefore,

ϕ(x) = min
v∈Rn

ϕ(v) ≥ min
v∈Rn

[
ϕ(y) + ⟨∇ϕ(y),v − y⟩+ µ

2
∥v − y∥22

]
= ϕ(y)− 1

2µ
∥∇ϕ(y)∥22

as wished. Adding two copies of the 1 with x and y interchanged, we get 2.

Remark 5.20 The converse of Theorem 5.19 is not valid. For instance, consider f(x1, x2) = x21−x22,
µ = 1. Then the inequalities 1. and 2. are satisfied but f /∈ S1

µ(R2) for any µ > 0.

Theorem 5.21 Let f be a twice continuously differentiable function. Then f ∈ S2
µ(Rn) if and only

if
∇2f(x) ⪰ µI, ∀x ∈ Rn.
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