
lower bound (L/(2ε))n : 1020 calls of the oracle
computational complexity of the oracle : at least n arithmetic operations
total complexity : 1021 arithmetic operations
CPU : 1GHz or 109 arithmetic operations per second
total time : 1012 seconds
one year : ≤ 3.2× 107 seconds
we need : ≥ 10000 years

• If we change n by n+ 1, the # of calls of the oracle is multiplied by 100.

• If we multiply ε by 2, the arithmetic complexity is reduced by 1000.

We know from Corollary 4.5 that the number of iterations of the uniform grid method is at
most (⌊L/(2ε)⌋+ 2)n. Theorem 4.6 showed that any method which uses only function evaluations
requires at least (⌊L/(2ε)⌋)n calls to have a better performance than ε. If for instance we take
ε = O(L/n), these two bounds coincide up to a constant factor. In this sense, the uniform grid
method is an optimal method for the class of problems P.

4.3 Optimality Conditions for Smooth Optimization Problems

Let f : Rn → R be a differentiable function on Rn, x̄ ∈ Rn, and s be a direction in Rn such that
∥s∥2 = 1. Consider the local decrease (or increase) of f(x) along s:

f ′(x̄; s) = lim
α→0

1

α
[f(x̄+ αs)− f(x̄)] .

Since f(x̄+ αs)− f(x̄) = α⟨∇f(x̄), s⟩+ o(∥αs∥2), we have f ′(x̄; s) = ⟨∇f(x̄), s⟩.
Using the Cauchy-Schwarz inequality −∥x∥2∥y∥2 ≤ ⟨x,y⟩ ≤ ∥x∥2∥y∥2,

f ′(x̄; s) = ⟨∇f(x̄), s⟩ ≥ −∥∇f(x̄)∥2.

Choosing in particular the direction s̄ = −∇f(x̄)/∥∇f(x̄)∥2,

f ′(x̄; s) = −
⟨
∇f(x̄),

∇f(x̄)

∥∇f(x̄)∥2

⟩
= −∥∇f(x̄)∥2.

Thus, the direction −∇f(x̄) is the direction of the fastest local decrease of f(x) at point x̄.

Theorem 4.8 (First-order necessary optimality condition) Let x∗ be a local minimum of
the differentiable function f(x). Then

∇f(x∗) = 0.

Proof:
Let x∗ be the local minimum of f(x). Then, there is r > 0 such that for all y with ∥y−x∗∥2 ≤ r,

f(y) ≥ f(x∗).
Since f is differentiable on Rn,

f(y) = f(x∗) + ⟨∇f(x∗),y − x∗⟩+ o(∥y − x∗∥2) ≥ f(x∗).

Dividing by ∥y − x∗∥2, and taking the limit y → x∗,

⟨∇f(x∗), s⟩ ≥ 0, ∀s ∈ Rn, ∥s∥2 = 1.

Choosing s = ei and s = −ei for (i = 1, 2, . . . , n), we conclude that ∇f(x∗) = 0.

Remark 4.9 For the first-order sufficient optimality condition, we need convexity for the function
f(x). See Theorem 5.8.
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Corollary 4.10 Let x∗ be a local minimum of a differentiable function f(x) subject to linear
equality constraints

x ∈ L := {x ∈ Rn | Ax = b} ̸= ∅,

where A ∈ Rm×n, b ∈ Rm, m < n.
Then, there exists a vector of multipliers λ∗ ∈ Rm such that

∇f(x∗) = ATλ∗.

Proof:
Consider the vectors ui (i = 1, 2, . . . , k) with k ≥ n−m which form an orthonormal basis of the

null space of A. Then, x ∈ L can be represented as

x = x(t) := x∗ +
k∑

i=1

tiui, t ∈ Rk.

Moreover, the point t = 0 is the local minimal solution of the function ϕ(t) = f(x(t)).
From Theorem 4.8, ∇ϕ(0) = 0. That is,

∂ϕ

∂ti
(0) = ⟨∇f(x∗),ui⟩ = 0, i = 1, 2, . . . , k.

Now there is t∗ ∈ Rk and λ∗ ∈ Rm such that

∇f(x∗) =
k∑

i=1

t∗iui +ATλ∗.

For each i = 1, 2, . . . , k,
⟨∇f(x∗),ui⟩ = t∗i = 0.

Therefore, we have the result.

The following type of result is called theorems of the alternative, and are closed related to duality
theory in optimization.

Corollary 4.11 Given A ∈ Rm×n, b ∈ Rm, c ∈ Rn, η ∈ R, either{
⟨c,x⟩ < η
Ax = b

has a solution x ∈ Rn, (3)

or 
{

⟨b,λ⟩ > 0

ATλ = 0
or{

⟨b,λ⟩ ≥ η

ATλ = c

 has a solution λ ∈ Rm, (4)

but never both

Proof:
Let us first show that if ∃x ∈ Rn satisfying (3), ̸ ∃λ ∈ Rm satisfying (4). Let us assume by

contradiction that ∃λ. Then ⟨λ,Ax⟩ = ⟨λ, b⟩ and in the homogeneous case it gives 0 = ⟨λ, b⟩ > 0
and in the non-homogeneous case it gives η > ⟨c,x⟩ = ⟨λ, b⟩ ≥ η. Both of cases are impossible.

Now, let us assume that ̸ ∃x ∈ Rn satisfying (3). If additionally ̸ ∃x ∈ Rn such that Ax = b, it
means that the columns of the matrix A do not spam the vector b. Therefore, there is 0 ̸= λ ∈ Rm

which is orthogonal to all of these columns and ⟨b,λ⟩ ̸= 0. Selecting the correct sign, we constructed
a λ which satisfies the homogeneous system of (4). Now, if for all x such that Ax = b we have

12



⟨c,x⟩ ≥ η, it means that the minimization of the function f(x) = ⟨c,x⟩ subject to Ax = b has an
optimal solution x∗ with f(x∗) ≥ η (since ∃x ∈ Rn such that Ax = b, we can always assume that
m ≤ n eliminating redundant linear constraints from the system. If n = m and A is nonsingular,
take λ = A−Tc. Otherwise, we can eliminate again redundant linear constraint to have n > m).
From Corollary 4.10, ∃λ ∈ Rm such that ATλ = c, and ⟨b,λ⟩ = ⟨x∗,ATλ⟩ = ⟨x∗, c⟩ ≥ η.

If f(x) is twice differentiable at x̄ ∈ Rn, then for y ∈ Rn, we have

∇f(y) = ∇f(x̄) +∇2f(x̄)(y − x̄) + o(∥y − x̄∥2),

where o(r) is such that limr→0 ∥o(r)∥2/r = 0 and o(0) = 0.

Theorem 4.12 (Second-order necessary optimality condition) Let x∗ be a local minimum
of a twice continuously differentiable function f(x). Then

∇f(x∗) = 0, ∇2f(x∗) ⪰ O.

Proof:
Since x∗ is a local minimum of f(x), ∃r > 0 such that for all y ∈ Rn which satisfy ∥y−x∗∥2 ≤ r,

f(y) ≥ f(x∗).
From Theorem 4.8, ∇f(x∗) = 0. Then

f(y) = f(x∗) +
1

2
⟨∇2f(x∗)(y − x∗),y − x∗⟩+ o(∥y − x∗∥22) ≥ f(x∗).

And ⟨∇2f(x∗)s, s⟩ ≥ 0, ∀s ∈ Rn with ∥s∥2 = 1.

Theorem 4.13 (Second-order sufficient optimality condition) Let the function f(x) be twice
continuously differentiable on Rn, and let x∗ satisfy the following conditions:

∇f(x∗) = 0, ∇2f(x∗) ≻ O.

Then, x∗ is a strict local minimum of f(x).

Proof:
In a small neighborhood of x∗, function f(x∗) can be represented as:

f(y) = f(x∗) +
1

2
⟨∇2f(x∗)(y − x∗),y − x∗⟩+ o(∥y − x∗∥22).

Since o(r)/r → 0, there is a r̄ > 0 such that for all r ∈ [0, r̄],

|o(r)| ≤ r

4
λ1(∇2f(x∗)),

where λ1(∇2f(x∗)) is the smallest eigenvalue of the symmetric matrix ∇2f(x∗) which is positive.
Then

f(y) ≥ f(x∗) +
1

2
λ1(∇2f(x∗))∥y − x∗∥22 + o(∥y − x∗∥22).

W.L.O.G, considering that r̄ < 1, |o(r2)| ≤ r2λ1(∇2f(x∗))/4 for r ∈ [0, r̄], finally we arrived at

f(y) ≥ f(x∗) +
1

4
λ1(∇2f(x∗))∥y − x∗∥22 > f(x∗).
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4.4 Algorithms for Minimizing Smooth Functions

4.4.1 Steepest Descent Method

Consider f : Rn → R a differentiable function on its domain.

Steepest Descent Method

Choose: x0 ∈ Rn

Iterate: xk+1 = xk − hk∇f(xk), k = 0, 1, . . .

We consider four strategies for the step-size hk:

1. Constant Step

The sequence {hk}∞k=0 is chosen in advance. For example

hk := h > 0,

hk :=
h√
k + 1

.

This is the simplest strategy.

2. Exact Line Search (Cauchy Step-Size)

The sequence {hk}∞k=0 is chosen such that

hk := argmin
h≥0

f(xk − h∇f(xk)).

This choice is only theoretical since even for the one dimensional case, it is very difficult and
expensive.

3. Goldstein-Armijo Rule

Find a sequence {hk}∞k=0 such that

α⟨∇f(xk),xk − xk+1⟩ ≤ f(xk)− f(xk+1),

β⟨∇f(xk),xk − xk+1⟩ ≥ f(xk)− f(xk+1),

where 0 < α < β < 1 are fixed parameters.

Since f(xk+1) = f(xk − hk∇f(xk)),

f(xk)− βhk∥∇f(xk)∥22 ≤ f(xk+1) ≤ f(xk)− αhk∥∇f(xk)∥22.

The acceptable steps exist unless f(xk+1) = f(xk − h∇f(xk)) is not bounded from below.

4. Barzilai-Borwein Step-Size1

Let us define sk−1 := xk − xk−1 and yk−1 := ∇f(xk)−∇f(xk−1). Then, we can define the
Barzilai-Borwein (BB) step sizes {h1k}∞k=1 and {h2k}∞k=1:

h1k :=
∥sk−1∥22

⟨sk−1,yk−1⟩
,

h2k :=
⟨sk−1,yk−1⟩
∥yk−1∥22

.

The first step-size is the one which minimizes the following secant condition ∥ 1
hsk−1 −yk−1∥22

while the second one minimizes ∥sk−1 − hyk−1∥22.
1J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA Journal of Numerical Analysis, 8

(1988), pp. 141–148.
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Now, consider the problem

min
x∈Rn

f(x)

where f ∈ C1,1
L (Rn), and f(x) is bounded from below.

Let us evaluate the result of one step of the steepest descent method.
Consider y = x− h∇f(x). From Lemma 3.6,

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥22

= f(x)− h∥∇f(x)∥22 +
h2L

2
∥∇f(x)∥22

= f(x)− h

(
1− h

2
L

)
∥∇f(x)∥22. (5)

Thus, one step of the steepest descent method decreases the value of the objective function at
least the following value for h∗ = 1/L.

f(y) ≤ f(x)− 1

2L
∥∇f(x)∥22.

Now, for the Goldstein-Armijo Rule, since xk+1 = xk − hk∇f(xk), we have:

f(xk)− f(xk+1) ≤ βhk∥∇f(xk)∥22,

and from (5)

f(xk)− f(xk+1) ≥ hk

(
1− hk

2
L

)
∥∇f(xk)∥22.

Therefore, hk ≥ 2(1− β)/L.
Also, substituting in

f(xk)− f(xk+1) ≥ αhk∥∇f(xk)∥22 ≥
2

L
α(1− β)∥∇f(xk)∥22.

Thus, in the three step-size strategies excepting the BB step size considered here, we can say
that

f(xk)− f(xk+1) ≥
ω

L
∥∇f(xk)∥22

for some positive constant ω.
Summing up the above inequality we have:

ω

L

N∑
k=0

∥∇f(xk)∥22 ≤ f(x0)− f(xN+1) ≤ f(x0)− f∗

where f∗ is the optimal value of the problem.
As a simple consequence we have

∥∇f(xk)∥2 → 0 as k → ∞.

Finally,

g∗N := min
0≤k≤N

∥∇f(xk)∥2 ≤
1√

N + 1

[
L

ω
(f(x0)− f∗)

]1/2
. (6)
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Remark 4.14 g∗N → 0, but we cannot say anything about the rate of convergence of the sequence
{f(xk)} or {xk}.

Example 4.15 Consider the function f(x, y) = 1
2x

2 + 1
4y

4 − 1
2y

2. (0,−1)T and (0, 1)T are local
minimal solutions, but (0, 0)T is a stationary point.

If we start the steepest descent method from (1, 0)T , we will only converge to the stationary
point.

We focus now on the following problem class:

Model: 1. min
x∈Rn

f(x)

2. f ∈ C1,1
L (Rn)

3. f(x) is bounded from below
Oracle: Only function and gradient values are available
Approximate solution: Find x̄ ∈ Rn such that f(x̄) ≤ f(x0) and ∥∇f(x̄)∥2 < ϵ

From (6), we have

g∗N < ε if N + 1 >
L

ωε2
(f(x0)− f∗).

Remark 4.16 This is much better than the result of Theorem 4.6, since it does not depend on n.

Finally, consider the following problem under Assumption 4.17.

min
x∈Rn

f(x)

Assumption 4.17

1. f ∈ C2,2
M (Rn);

2. There is a local minimum x∗ of the function f(x);

3. We know some bound 0 < ℓ ≤ L < ∞ for the Hessian at x∗:

ℓI ⪯ ∇2f(x∗) ⪯ LI;

4. Our starting point x0 is close enough to x∗.

Theorem 4.18 Let f(x) satisfy our assumptions above and let the starting point x0 be close
enough to a local minimum:

r0 = ∥x0 − x∗∥2 < r̄ :=
2ℓ

M
.

Then, the steepest descent method with step-size h∗ = 2/(L+ ℓ) converges as follows:

∥xk − x∗∥2 ≤
r̄r0

r̄ − r0

(
1− 2ℓ

L+ 3ℓ

)k

.

This rate of convergence is called (R-)linear.

Proof:
In the steepest descent method, the iterates are xk+1 = xk − hk∇f(xk).
Since ∇f(x∗) = 0,
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∇f(xk) = ∇f(xk)−∇f(x∗) =

∫ 1

0
∇2f(x∗ + τ(xk − x∗))(xk − x∗)dτ = Gk(xk − x∗),

and therefore,

xk+1 − x∗ = xk − x∗ − hkGk(xk − x∗) = (I − hkGk)(xk − x∗).

Let rk = ∥xk − x∗∥2. From Lemma 3.8,

∇2f(x∗)− τMrkI ⪯ ∇2f(x∗ + τ(xk − x∗)) ⪯ ∇2f(x∗) + τMrkI.

Integrating all parts from 0 to 1 and using our hypothesis,

(ℓ− rk
2
M)I ⪯ Gk ⪯ (L+

rk
2
M)I.

Therefore, (
1− hk(L+

rk
2
M)
)
I ⪯ I − hkGk ⪯

(
1− hk(ℓ−

rk
2
M)
)
I.

We arrive at
∥I − hkGk∥2 ≤ max{|ak(hk)|, |bk(hk)|}

where ak(h) = 1− h(ℓ− rk
2 M) and bk(h) = h(L+ rk

2 M)− 1.
Notice that ak(0) = 1 and bk(0) = −1.
Now, let us use our hypothesis that r0 < r̄.
When ak(h) = bk(h), we have 1− h(ℓ− rk

2 M) = h(L+ rk
2 M)− 1, and therefore

h∗k =
2

L+ ℓ
.

(Surprisingly, it does not depend neither on M nor rk). Finally,

rk+1 = ∥xk+1 − x∗∥2 ≤
(
1− 2

L+ ℓ

(
ℓ− rk

2
M
))

∥xk − x∗∥2.

That is,

rk+1 ≤
(
L− ℓ

L+ ℓ
+

rkM

L+ ℓ

)
rk.

and rk+1 < rk < r̄.
Now, let us analyze the rate of convergence. Multiplying the above inequality by M/(L+ ℓ),

Mrk+1

L+ ℓ
≤ M(L− ℓ)

(L+ ℓ)2
rk +

M2r2k
(L+ ℓ)2

.

Calling αk = Mrk
L+ℓ and q = 2ℓ

L+ℓ , we have

αk+1 ≤ (1− q)αk + α2
k = αk(1 + αk − q) =

αk(1− (αk − q)2)

1− (αk − q)
. (7)

Now, since rk < 2ℓ
M , αk − q = Mrk

L+ℓ − 2ℓ
L+ℓ < 0, and 1 + (αk − q) = L−ℓ

L+ℓ +
Mrk
L+ℓ > 0. Therefore,

−1 < αk − q < 0, and (7) becomes ≤ αk
1+q−αk

.

1

αk+1
≥ 1 + q

αk
− 1.

q

αk+1
− 1 ≥ q(1 + q)

αk
− q − 1 = (1 + q)

(
q

αk
− 1

)
.

and then,

q

αk
− 1 ≥ (1 + q)k

(
q

α0
− 1

)
= (1 + q)k

(
2ℓ

L+ ℓ

L+ ℓ

Mr0
− 1

)
= (1 + q)k

(
r̄

r0
− 1

)
,

αk

q
≤
(

1

1 + q

)k ( r0
r̄ − r0

)
.
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Finally, we arrive at

rk = ∥xk − x∗∥2 ≤
r̄r0

r̄ − r0

(
1− 2ℓ

L+ 3ℓ

)k

.

4.4.2 The Newton Method

Example 4.19 Let us apply the Newton method to find the root of the following function

g(x) =
x√

1 + x2
.

Clearly x∗ = 0.
The Newton method will give:

xk+1 = xk −
g(xk)

g′(xk)
= xk − xk(1 + x2k) = −x3k.

Therefore, the method converges if |x0| < 1, it oscillates if |x0| = 1, and finally, diverges if |x0| > 1.

Assumption 4.20

1. f ∈ C2,2
M (Rn);

2. There is a local minimum x∗ of the function f(x);

3. The Hessian is positive definite at x∗:

∇2f(x∗) ⪰ ℓI, ℓ > 0;

4. Our starting point x0 is close enough to x∗.

Theorem 4.21 Let the function f(x) satisfy the above assumptions. Suppose that the initial
starting point x0 is close enough to x∗:

∥x0 − x∗∥2 < r̄ :=
2ℓ

3M
.

Then ∥xk − x∗∥2 < r̄ for all k of the Newton method and it converges (Q-)quadratically:

∥xk+1 − x∗∥2 ≤
M∥xk − x∗∥22

2(ℓ−M∥xk − x∗∥2)
.

Proof:
Let rk = ∥xk − x∗∥2. From Lemma 3.8 and the assumption, we have for k = 0,

∇2f(x0) ⪰ ∇2f(x∗)−Mr0I ⪰ (ℓ−Mr0)I. (8)

Since r0 < r̄ = 2ℓ
3M < ℓ

M , we have ℓ−Mr0 > 0 and therefore, ∇2f(x0) is invertible.
Consider the Newton method for k = 0, x1 = x0 − [∇2f(x0)]

−1∇f(x0).
Then

x1 − x∗ = x0 − x∗ − [∇2f(x0)]
−1∇f(x0)

= x0 − x∗ − [∇2f(x0)]
−1

∫ 1

0
∇2f(x∗ + τ(x0 − x∗))(x0 − x∗)dτ

= [∇2f(x0)]
−1G0(x0 − x∗)
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where G0 =
∫ 1
0 [∇

2f(x0)−∇2f(x∗ + τ(x0 − x∗))]dτ .
Then

∥G0∥2 =

∥∥∥∥∫ 1

0
[∇2f(x0)−∇2f(x∗ + τ(x0 − x∗))]dτ

∥∥∥∥
2

≤
∫ 1

0
∥∇2f(x0)−∇2f(x∗ + τ(x0 − x∗))∥2dτ

≤
∫ 1

0
M |1− τ |r0dτ =

r0
2
M.

From (8),
∥[∇2f(x0)]

−1∥2 ≤ (ℓ−Mr0)
−1.

Then

r1 ≤
Mr20

2(ℓ−Mr0)
.

Since r0 < r̄ = 2ℓ
3M , we have Mr0 < 2(ℓ−Mr0) and therefore Mr0

2(ℓ−Mr0)
< 1. Then r1 < r0.

One can see now that the same argument is valid for all k’s.

• Comparing this result with the rate of convergence of the steepest descent, we see that the
Newton method is much faster.

• Surprisingly, the region of quadratic convergence of the Newton method is almost the same as
the region of the linear convergence of the gradient method.

∥x0 − x∗∥2 <
2ℓ

M
(steepest descent method) ∥x0 − x∗∥2 <

2ℓ

3M
(Newton method)

• This justifies a standard recommendation to use the steepest descent method only at the
initial stage of the minimization process in order to get close to a local minimum and then
perform the Newton method to refine.

4.4.3 The Conjugate Gradient Methods

The conjugate gradient methods were initially proposed for minimizing convex quadratic functions.
Consider the problem

min
x∈Rn

f(x)

with f(x) = α + ⟨a,x⟩ + 1
2⟨Ax,x⟩, AT = A ∈ Rn×n and A ≻ O. Since its minimal solution is

x∗ = −A−1a, we can rewrite f(x) as:

f(x) = α− ⟨Ax∗,x⟩+ 1

2
⟨Ax,x⟩

= α− 1

2
⟨Ax∗,x∗⟩+ 1

2
⟨A(x− x∗),x− x∗⟩.

Thus, f(x∗) = α− 1
2⟨Ax∗,x∗⟩ and ∇f(x) = A(x− x∗).

Definition 4.22 Given a starting point x0, the linear Krylov subspaces are defined as

Lk := span{A(x0 − x∗), . . . ,Ak(x0 − x∗)}, k ≥ 1,

where span{a1,a2, . . . ,ap} is the linear subspace of Rn spanned by the vectors a1,a2, . . . ,ap ∈ Rn.
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We claim temporarily that the sequence of points generated by a conjugate gradient method is
defined as follows:

xk := argmin{f(x) | x ∈ x0 + Lk}, k ≥ 1.

Lemma 4.23 For any k ≥ 1, Lk = span{∇f(x0), . . . ,∇f(xk−1)}.

Proof:
Let us prove by induction hypothesis.
For k = 1, the statement is true since ∇f(x0) = A(x0 − x∗).
Suppose the claim is true for some k ≥ 1. Then from the definition of the conjugate gradient

method,

xk = x0 +

k∑
i=1

λiA
i(x0 − x∗)

with some λi ∈ R, i = 1, . . . , k. Therefore,

∇f(xk) = A(x0−x∗)+
k∑

i=1

λiA
i+1(x0−x∗) = A(x0−x∗)+

k−1∑
i=1

λiA
i+1(x0−x∗)+λkA

k+1(x0−x∗).

The first two terms of the last expression belongs to Lk from the definition. And then,

span{Lk,∇f(xk)} ⊆ span{Lk,A
k+1(x0 − x∗)} = Lk+1.

There are two ways to show that the equality holds.
Assume that Ak+1(x0 − x∗) ∈ Lk. Then it is obvious and Lk = Lk+1. If Ak+1(x0 − x∗) /∈ Lk,

the equality holds unless λk = 0. However, this possibility implies that xk ∈ Lk−1, xk−1 = xk and
therefore, Lk−1 = Lk = Lk+1 again.

An alternative way is to use contradiction. If the equality does not hold, ∇f(xk) ∈ Lk implies
Ak+1(x0 − x∗) ∈ Lk, which again implies the equality, or λk = 0, which implies that xk = xk−1

(algorithm terminated).

Lemma 4.24 For any k, ℓ ≥ 0, k ̸= ℓ, we have ⟨∇f(xk),∇f(xℓ)⟩ = 0.

Proof:
Let k ≥ i, and consider

ϕ(λ) = f

x0 +
k∑

j=1

λj∇f(xj−1)

 .

From the previous lemma, there is a λ∗ ∈ Rk such that xk = x0 +
∑k

j=1 λ
∗
j∇f(xj−1). Moreover,

λ∗ is the minimum of the function ϕ(λ). Therefore,

∂ϕ

∂λi
(λ∗) = ⟨∇f(xk),∇f(xi−1)⟩ = 0.

Corollary 4.25 The sequence generated by the conjugate gradient method for the convex quadratic
function is finite.

Proof:
Since the number of orthogonal directions in Rn cannot exceed n.

Let us define δi = xi+1 − xi. It is clear that Lk = span{δ0, δ1, . . . , δk−1} (Exercise 10).
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Lemma 4.26 For any k, ℓ ≥ 0, k ̸= ℓ, ⟨Aδk, δℓ⟩ = 0.

Proof:
Left for exercise.

The vectors {δi} are called conjugate with respect to matrix A.
Now, let us be more precise with the conjugate gradient method. We will define the next

iterations as follows:

xk+1 = xk − hk∇f(xk) +
k−1∑
j=0

λjδj

Using the previous properties, we arrive that (see Exercise 11)

λj = 0, (j = 0, 1, . . . , k − 2), λk−1 =
hk∥∇f(xk)∥22

⟨∇f(xk)−∇f(xk−1), δk−1⟩
. (9)

Thus

xk+1 = xk − hkpk

where

pk = ∇f(xk)−
∥∇f(xk)∥22pk−1

⟨∇f(xk)−∇f(xk−1),pk−1⟩
.

Finally, we can present the Conjugate Gradient Method

Conjugate Gradient Method

Step 0: Let x0 ∈ Rn, compute f(x0),∇f(x0) and set p0 := ∇f(x0), k := 0
Step 1: Find xk+1 := xk − hkpk by “approximate line search” on the scalar hk
Step 2: Compute f(xk+1) and ∇f(xk+1)
Step 3: Compute the coefficient βk+1

Step 4: Set pk+1 := ∇f(xk+1)− βk+1pk, k := k + 1 and go to Step 1

The most popular choices for the coefficient βk are:

1. Hestenes-Stiefel (1952): βk+1 =
⟨∇f (xk+1),∇f (xk+1)−∇f (xk)⟩

⟨∇f (xk+1)−∇f (xk),pk⟩
.

2. Fletcher-Reeves (1964): βk+1 =
∥∇f (xk+1)∥22
∥∇f (xk)∥22

.

3. Polak-Ribière (1969): βk+1 =
⟨∇f (xk+1),∇f (xk+1)−∇f (xk)⟩

∥∇f (xk)∥22
.

4. Polak-Ribière plus: βk+1 = max
{
0,

⟨∇f (xk+1),∇f (xk+1)−∇f (xk)⟩
∥∇f (xk)∥22

}
.

5. Dai-Yuan (1999): βk+1 =
∥∇f (xk+1)∥22

⟨∇f (xk+1)−∇f (xk),pk⟩
.

Among them, Hestenes-Stiefel and Polak-Ribière are empirically preferred.
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4.4.4 Quasi-Newton Methods

The basic idea of quasi-Newton methods is to approximate the Hessian matrix (or its inverse) which
we need to compute in the Newton method. There are of course infinitely many ways to do so, but
we choose the ones which satisfy the secant equation:

Hk+1yk = sk

where yk = ∇f(xk+1)−∇f(xk), sk = xk+1 − xk.
The general scheme of the quasi-Newton method is as follows.

Quasi-Newton Method

Step 0: Let x0 ∈ Rn, H0 := I, k := 0. Compute f(x0),∇f(x0)
Step 1: Set pk := Hk∇f(xk)
Step 2: Find xk+1 := xk − hkpk by “approximate line search” on the scalar hk
Step 3: Compute f(xk+1) and ∇f(xk+1)
Step 4: Compute Hk+1 from Hk, k := k + 1 and go to Step 1

The most popular updates for Hk+1 are:

1. BFGS (Broyden-Fletcher-Goldfarb-Shanno)

Hk+1 :=

(
I − sk(yk)

T

⟨sk,yk⟩

)
Hk

(
I − yk(sk)

T

⟨sk,yk⟩

)
+

sk(sk)
T

⟨sk,yk⟩

2. DFP (Davidon-Fletcher-Powell)

Hk+1 := Hk +
sk(sk)

T

⟨yk, sk⟩
− Hkyk(yk)

THk

⟨yk,Hkyk⟩

3. Symmetric-Rank-One

Hk+1 := Hk +
(sk −Hkyk)(sk −Hkyk)

T

⟨sk −Hkyk,yk⟩

In the same way for the conjugate gradient method, we can show that the quasi-Newton method
converges in finite number of iterations for a strictly convex quadratic function. Moreover, under
some strict convexity conditions at the neighborhood of the local minimum, it is possible to show
that its iterates converge super-linearly [Nocedal].

4.5 Exercises

1. Let f : Rn → R, g : Rn → Rm continuously differentiable functions and h ∈ Rm. Define the
following optimization problem. 

minimize f(x)
subject to g(x) = h

x ∈ Rn

Write the Karush-Kuhn-Tucker (KKT) conditions corresponding to the above problem.

2. In view of Theorem 4.13, find a twice continuously differentiable function on Rn which satisfies
∇f(x∗) = 0, ∇2f(x∗) ⪰ O, but x∗ is not a local minimum of f(x).
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3. Let f : Rn → R be a continuous differentiable and convex function. If x∗ ∈ Rn is such that
∇f(x∗) = 0, then show that x∗ is a global minimum for f(x).

4. Determine the Cauchy step-size hk ∈ R for the following strictly convex quadratic function
f(x) = 1

2x
TQx+ qTx+ γ, where Q is a n× n real positive definite matrix.

5. Give a geometric interpretation of the following step-size strategies:

Let 0 < c1 < c2 < 1,

• Wolfe condition

f(xk − h∇f(xk)) ≤ f(xk)− c1h∥∇f(xk)∥22,
⟨∇f(xk − h∇f(xk)),∇f(xk)⟩ ≤ c2∥∇f(xk)∥22.

• Strong Wolfe condition

f(xk − h∇f(xk)) ≤ f(xk)− c1h∥∇f(xk)∥22,
|⟨∇f(xk − h∇f(xk)),∇f(xk)⟩| ≤ c2∥∇f(xk)∥22.

6. Consider a sequence {βk}∞k=0 which converges to zero.

The sequence is said to converge Q-linearly if there exists a scalar ρ ∈ (0, 1) such that∣∣∣∣βk+1

βk

∣∣∣∣ ≤ ρ,

for all k sufficiently large. Q-superlinear convergence occurs when we have

lim
k→∞

βk+1

βk
= 0,

while the convergence is Q-quadratic if there is a constant C such that

|βk+1|
β2
k

≤ C

for all k sufficiently large. Q-superquadratic convergence is indicated by

lim
k→∞

βk+1

β2
k

= 0.

(a) Show that the following implications are valid: Q-superquadratic ⇒ Q-quadratic ⇒ Q-
superlinear ⇒ Q-linear.

(b) Give examples of sequences which do not imply the opposite directions in the three cases
above.

A zero converging sequence {βk}∞k=0 is said to converge R-linearly if it is dominated by a

Q-linearly converging sequence. That is, if there is a Q-linearly converging sequence {β̂k}∞k=0

such that 0 ≤ |βk| ≤ β̂k.

(c) Give a sequence which is R-linearly converging but not Q-linearly converging.

7. Let f(x) = 1
2x

TQx such that Q is symmetric and indefinite. Apply the steepest descent
method with constant step. Show that if the starting point x0 belongs to the space spanned
by the negative eigenvectors, the sequence generated by the steepest descent method diverges.

8. Prove Lemma 4.26.
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