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Course description and aims

This course will cover basic notions to comprehend the gradient-based methods for convex optimiza-
tion problems considered in mathematical optimization, machine learning and image processing. It
starts with the basics, from the definition of convex sets in convex optimization, and will gradually
focus on continuously differentiable convex functions. Along the lectures, it will also cover the char-
acterization of solutions of optimization problems (optimality conditions), and numerical methods
for general problems such as steepest descent methods, Newton method, conjugate gradient meth-
ods, and quasi-Newton methods. In the latter part, the accelerated gradient method of Nesterov
for Lipschitz continuous differentiable convex functions will be detailed.

Student learning outcomes

Objectives: Learn the mathematical concepts and notions from the basics necessary for numerical
methods for convex optimization problems. Definitions and proofs of theorems will be carefully
explained. The objective is to understand the role of basic theorems of convex optimization in
scientific articles, and to be prepared to apply them for other problems in mathematical optimization
and machine learning.
Theme: In the first part, important theorems to analyze convex optimization problems will be
introduced. In the second part, the Nesterov’s accelerated gradient method which has received a
lot of attention in the recent years will be explained from the mathematical point of view.

Keywords

Convex function, algorithm analysis, convex optimization problem, numerical methods in opti-
mization, differentiable convex functions with Lipschitz continuous gradients, accelerated gradient
method

Plan of the Lecture (tentative)

1. Convex sets and related results

2. Lipschitz continuous differentiable functions
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3. Optimal conditions for differentiable functions

4. Minimization algorithms for unconstrained optimization problems

5. Steepest descent method and Newton method

6. Conjugate gradient methods, quasi-Newton methods

7. General assignment to check the comprehension

8. Convex differentiable function

9. Differentiable Convex functions with Lipschitz continuous gradients

10. Worse case analysis for gradient based methods

11. Steepest descent method for differentiable convex functions

12. Estimate sequence in accelerated gradient methods for differentiable convex functions

13. Accelerated gradient method for differentiable convex functions

14. Accelerated gradient methods for min-max problems

15. Extensions of the accelerated gradient methods
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Prerequisites

It is preferred that the attendees have basic notions of mathematics such as linear algebra, calculus,
and elementary topology, as well as understand basic methodologies to prove.

Assessment criteria and methods/Evaluation

Understand the basic theorems related to convex sets and convex functions, and the basic numerical
methods to solve mathematical optimization problems. Grade will be based on mid-term and final
exams or on reports along the course. Exceptionally this year, grade will be based on Two Reports
or One Final Report. The final decision will be announced during the lectures based on the number
of students.
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1 Convex Sets

Definition 1.1 A subset C of Rn is convex if for ∀x,y ∈ C and ∀α ∈ [0, 1], αx+ (1− α)y ∈ C.

Example 1.2 Examples of convex sets.

Definition 1.3 We define as a polyhedron the set which can be represented as an intersection of
finitely many closed half spaces of Rn. Due to exercise 2, polyhedra are convex sets.

Definition 1.4 Given x1,x2, . . . ,xm ∈ Rn, a point y ∈ Rn is said to be a convex combination
of x1,x2, . . . ,xm ∈ Rn if there exists non-negative λ1, λ2, . . . , λm ∈ R such that

∑m
i=1 λi = 1 and

y =
∑m

i=1 λixi.

Example 1.5 Given x0,x1, . . . ,xm ∈ Rn, m+1 distinct point of Rn (m ≤ n) such that x1−x0,x2−
x0, . . . ,xm −x0 are linear independent, the set formed by all convex combination of x0,x1, . . . ,xm

is called an m-simplex in Rn.

Theorem 1.6 A subset of Rn is convex if and only if it contains all the convex combinations of its
elements.

Proof:
⇐ Trivial.
⇒ Let us show by induction on the number of elements m. For m = 2, it follows from the

definition of convexity. Let us assume that the claim is valid for any convex combination of m or
fewer elements. Consider x1,x2, . . . ,xm+1 elements of the set and λ1, λ2, . . . , λm+1 ≥ 0 such that∑m+1

i=1 λi = 1. If λm+1 = 0 or λm+1 = 1, it falls in the previous cases. Therefore, let 0 < λm+1 < 1.

Then
∑m+1

i=1 λixi =
(∑m

j=1 λj

) ∑m
i=1 λixi∑m
j=1 λj

+ λm+1xm+1 = (1 − λm+1)
∑m

i=1
λi∑m

j=1 λj
xi + λm+1xm+1

belongs to the set due to the induction hypothesis and definition of convexity.

Definition 1.7 The intersection of all convex sets containing a given set S ⊆ Rn is called convex
hull of S and is denoted by hull(S). Again due to Exercise 2, hull(S) is convex.

The following theorem shows that a hull(S) can be constructed from the convex combination
consisting only by its elements.

Theorem 1.8 The convex hull of S ⊆ Rn, hull(S), consists of all convex combinations of elements
of S.

Proof:
Let B := {

∑k
i=1 λixi | ∃k, λi ≥ 0,

∑k
i=1 λi = 1,xi ∈ S (i = 1, 2, . . . , k)} be the later set. If

y1,y2 ∈ B, then ∃ℓ,m ∈ N, a1,a2, . . . ,aℓ, b1, b2, . . . , bm ∈ S, and non-negative α1, α2, . . . , αℓ, β1, β2,
. . . , βm ∈ R such that y1 =

∑ℓ
i=1 αiai, y2 =

∑m
j=1 βjbj ,

∑ℓ
i=1 αi = 1, and

∑m
j=1 βj = 1. Then

for 0 ≤ λ ≤ 1, λy1 + (1 − λ)y2 =
∑ℓ

i=1 λαiai +
∑m

j=1(1 − λ)βjbj with λαi, (1 − λ)βj ≥ 0,∑ℓ
i=1 λαi +

∑m
j=1(1 − λ)βj = 1. Therefore, B is convex (alternatively, note the observation at

Definition 1.7). It is also clear that S ⊆ B, and therefore, hull(S) ⊆ B. From Theorem 1.6 the
convex set hull(S) must contain all convex combinations of elements of S. Hence B ⊆ hull(S).

Theorem 1.9 (Carathéodory’s Theorem) Let S ⊆ Rn. If x is a convex combination of ele-
ments of S, then x is a convex combination of n+ 1 or fewer elements of S.

Proof:
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Let x =
∑m

i=1 αixi, xi ∈ S, αi ≥ 0,
∑m

i=1 αi = 1. We will show that if m > n + 1, then x can
be written as a convex combination of m− 1 elements of S. Therefore, suppose that all 0 < αi < 1.
Since m− 1 > n, ∃β1, β2, . . . , βm−1 ∈ R not all zeros such that

β1(x1 − xm) + β2(x2 − xm) + · · ·+ βm−1(xm−1 − xm) = 0.

Define βm = −
∑m−1

i=1 βi. Then

m∑
i=1

βi = 0 and
m∑
i=1

βixi = 0.

Since 0 < αi < 1, ∃γ > 0 such that δi := αi − γβi ≥ 0 (i = 1, 2, . . . ,m) and at least one δi, say
δj = 0. Then

x =

m∑
i=1

αixi =

m∑
i=1

δixi +

m∑
i=1

γβixi =

m∑
i=1,i ̸=j

δixi,

and δi ≥ 0 (i = 1, 2, . . . ,m),
∑m

i=1 δi =
∑m

i=1 αi − γ
∑m

i=1 βi = 1.
We can do this procedure whenever m > n+ 1.

Proposition 1.10 If C1 and C2 are convex sets in Rn, then so is their sum:

C1 + C2 := {x1 + x2 ∈ Rn | x1 ∈ C1, x2 ∈ C2}.

Proposition 1.11 The product of a convex set in Rn, C with a scalar α ∈ R:

αC := {αx ∈ Rn | x ∈ C}

is a convex set.

1.1 Exercises

1. Show that the set of n× n symmetric and positive definite matrices is a convex set.

2. Show that the intersection of an arbitrary collection of convex sets is a convex set.

3. Show that the closed ball centered at x̄ ∈ Rn, {x ∈ Rn | ∥x− x̄∥ ≤ ε}, with ε > 0 is a convex
set.

4. Show that the interior of a convex set is a convex set.

5. Show that the closure of a convex set is a convex set.

6. Let C ⊆ Rn a convex set and A ∈ Rm×n a real matrix. Show that the set {Ax ∈ Rm | x ∈ C}
is also convex.

7. Show that the convex hull of a set S ⊆ Rn is the unique and the smallest convex set containing
S.

8. Prove Proposition 1.10.

9. Find an example where the sum of two closed sets is not a closed set.

10. Prove Proposition 1.11.
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2 Separation Theorems for Convex Sets

The separation theorem for convex sets can be proved using the Farka’s Lemma. Here, we follow
[Bertsekas] and use a geometric fact of a (an orthogonal) projection onto a convex set.

Proposition 2.1 Let C ⊆ Rn a convex set and x̂ ∈ Rn be a point that does not belong to the
interior of C. Then there exists a vector d ̸= 0 such that

dTx ≥ dT x̂, ∀x ∈ C.

Proof:
Since x̂ ̸∈ int(C), there is a sequence {xk} which does not belong to the closure of C, C̄, and

converges to x̂. Now, denote by p(xk) the orthogonal projection of xk onto C̄ by a standard norm.
One can see that by the convexity of C̄ [Bertsekas]

(p(xk)− xk)
T (x− p(xk)) ≥ 0, ∀x ∈ C̄.

Hence,

(p(xk)−xk)
Tx ≥ (p(xk)−xk)

T p(xk) = (p(xk)−xk)
T (p(xk)−xk)+(p(xk)−xk)

Txk ≥ (p(xk)−xk)
Txk.

Now, since xk ̸∈ C̄, calling dk = p(xk)−xk

∥p(xk)−xk∥ ,

dT
k x ≥ dT

k xk, ∀x ∈ C̄.

Since ∥dk∥ = 1, it has a converging subsequence which will converge to let us say d. Taking the
same indices for this subsequence for xk, we have the desired result.

Theorem 2.2 (Separation Theorem for Convex Sets) Let C1 and C2 nonempty non-intersecting
convex subsets of Rn. Then, ∃d ∈ Rn, d ̸= 0 such that

sup
x1∈C1

dTx1 ≤ inf
x2∈C2

dTx2.

Proof:
Consider the set

C := {x2 − x1 ∈ Rn | x2 ∈ C2, x1 ∈ C1}

which is convex by Propositions 1.10 and 1.11.
Since C1 and C2 are disjoint, the origin 0 does not belong to the interior of C. From Proposi-

tion 2.1, there is d ̸= 0 such that dTx ≥ 0, ∀x ∈ C. Therefore

dTx1 ≤ dTx2, ∀x1 ∈ C1 and x2 ∈ C2.

Finally, since both C1 and C2 are nonempty, it follows the result.

Remark 2.3 The Separation Theorem for Convex Sets is an essential result to show the strong
duality theorem in convex optimization problems (see for example [Bertsekas]).

3 Lipschitz Continuous Differentiable Functions

Definition 3.1 Let x ∈ Rn and 0 ̸=s ∈ Rn be a direction (vector) in Rn. The directional derivative
of a function f : Rn → R in the direction s is defined as

f ′(x; s) := lim
α→0

f(x+ αs)− f(x)

α
.
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Definition 3.2 Let f : Rn → R be a continuous function on Rn. This function is also a (Fréchet)
differentiable function on Rn if for any x,y ∈ Rn, we have

f(y) = f(x) + ⟨∇f(x),y − x⟩+ o(∥y − x∥2),

where o(r) is some function of r > 0 such that

lim
r→0

1

r
o(r) = 0, o(0) = 0.

In particular, if a function f : Rn → R is differentiable on Rn and 0 ̸= s ∈ Rn, then,

f ′(x; s) = ⟨∇f(x), s⟩, for x ∈ Rn.

We say that the function is continuously differentiable if the function ∇f : Rn → Rn is contin-
uous.

Hereafter, we define for a, b ∈ Rn, the standard inner product ⟨a, b⟩ :=
∑n

i=1 aibi, and the
associated norm ∥a∥2 :=

√
⟨a,a⟩ to it. For A ∈ Rn×m, ∥A∥2 := σ1(A), where σ1(A) is the largest

singular value. In particular, if A = AT ∈ Rn×n, σ1(A) = maxi=1,2,...,n |λi(A)|, the largest absolute
eigenvalue of A.

Definition 3.3 Let Q be a subset of Rn. We denote by Ck,p
L (Q) the class of functions with the

following properties:

• Any f ∈ Ck,p
L (Q) is k times continuously differentiable on Q;

• Its pth derivative is Lipschitz continuous on Q with the constant L ≥ 0:

∥f (p)(x)− f (p)(y)∥2 ≤ L∥x− y∥2, ∀x,y ∈ Q.

In particular, f (1)(x) = ∇f(x) and f (2)(x) = ∇2f(x). Observe that if f1 ∈ Ck,p
L1

(Q), f2 ∈
Ck,p
L2

(Q), and α, β ∈ R, then for L3 = |α|L1 + |β|L2 we have αf1 + βf2 ∈ Ck,p
L3

(Q).

Lemma 3.4 Let f ∈ C2(Rn). Then f ∈ C2,1
L (Rn) if and only if ∥∇2f(x)∥2 ≤ L, ∀x ∈ Rn.

Proof:
For x,y ∈ Rn,

∇f(y) = ∇f(x) +

∫ 1

0
∇2f(x+ τ(y − x))(y − x)dτ

= ∇f(x) +

(∫ 1

0
∇2f(x+ τ(y − x))dτ

)
(y − x).

Since ∥∇2f(x)∥2 ≤ L,

∥∇f(y)−∇f(x)∥2 ≤
∥∥∥∥∫ 1

0
∇2f(x+ τ(y − x))dτ

∥∥∥∥
2

∥y − x∥2

≤
∫ 1

0
∥∇2f(x+ τ(y − x))∥2dτ∥y − x∥2

≤ L∥y − x∥2.

On the other hand, for s ∈ Rn, and α ∈ R, α ̸= 0,

∥∇f(x+ αs)−∇f(x)∥2 ≤ |α|L∥s∥2.
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Dividing both sides by |α| and taking the limit to zero,

∥∇2f(x)s∥2 ≤ L∥s∥2, s ∈ Rn.

Therefore, ∥∇2f(x)∥2 ≤ L.

Example 3.5

1. The linear function f(x) = α+ ⟨a,x⟩ ∈ C2,1
0 (Rn) since

∇f(x) = a, ∇2f(x) = O.

2. The quadratic function f(x) = α + ⟨a,x⟩ + 1/2⟨Ax,x⟩ with A = AT belongs to C2,1
L (Rn)

where
∇f(x) = a+Ax, ∇2f(x) = A, L = ∥A∥2.

3. The function f(x) =
√
1 + x2 ∈ C2,1

1 (R) since

f ′(x) =
x√

1 + x2
, f ′′(x) =

1

(1 + x2)3/2
≤ 1.

Lemma 3.6 Let f ∈ C1,1
L (Rn). Then for any x,y ∈ Rn, we have

|f(y)− f(x)− ⟨∇f(x),y − x⟩| ≤ L

2
∥y − x∥22.

Proof:
For any x,y ∈ Rn, we have

f(y) = f(x) +

∫ 1

0
⟨∇f(x+ τ(y − x)),y − x⟩dτ

= f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0
⟨∇f(x+ τ(y − x))−∇f(x),y − x⟩dτ.

Therefore,

|f(y)− f(x)− ⟨∇f(x),y − x⟩| =

∣∣∣∣∫ 1

0
⟨∇f(x+ τ(y − x))−∇f(x),y − x⟩dτ

∣∣∣∣
≤

∫ 1

0
|⟨∇f(x+ τ(y − x))−∇f(x),y − x⟩|dτ

≤
∫ 1

0
∥∇f(x+ τ(y − x))−∇f(x)∥2∥y − x∥2dτ

≤
∫ 1

0
τL∥y − x∥22dτ =

L

2
∥y − x∥22.

Consider a function f ∈ C1,1
L (Rn). Let us fix x0 ∈ Rn, and define two quadratic functions:

ϕ1(x) = f(x0) + ⟨∇f(x0),x− x0⟩ −
L

2
∥x− x0∥22,

ϕ2(x) = f(x0) + ⟨∇f(x0),x− x0⟩+
L

2
∥x− x0∥22.

Then the graph of the function f is located between the graphs of ϕ1 and ϕ2:

ϕ1(x) ≤ f(x) ≤ ϕ2(x), x ∈ Rn.
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Lemma 3.7 Let f ∈ C2,2
M (Rn). Then for all x,y ∈ Rn, we have

∥∇f(y)−∇f(x)−∇2f(x)(y − x)∥2 ≤
M

2
∥y − x∥22,

|f(y)− f(x)− ⟨∇f(x),y − x⟩ − 1

2
⟨∇2f(x)(y − x),y − x⟩| ≤ M

6
∥y − x∥32.

Lemma 3.8 Let f ∈ C2,2
M (Rn), with ∥∇2f(x)−∇2f(y)∥2 ≤ M∥x− y∥2. Then

∇2f(x)−M∥y − x∥2I ⪯ ∇2f(y) ⪯ ∇2f(x) +M∥y − x∥2I.

Proof:
Since f ∈ C2,2

M (Rn), ∥∇2f(y) − ∇2f(x)∥2 ≤ M∥y − x∥2. This means that the eigenvalues of
the symmetric matrix ∇2f(y)−∇2f(x) satisfy:

|λi(∇2f(y)−∇2f(x))| ≤ M∥y − x∥2, i = 1, 2, . . . , n.

Therefore,
−M∥y − x∥2I ⪯ ∇2f(y)−∇2f(x) ⪯ M∥y − x∥2I.

3.1 Exercises

1. Prove Lemma 3.7.

4 Optimality Conditions and Algorithms for Minimizing Func-
tions

4.1 General Minimization Problem and Terminologies

Definition 4.1 We define the general minimization problem as follows
minimize f(x)
subject to fj(x) & 0, j = 1, 2, . . . ,m

x ∈ S,
(1)

where f : Rn → R, fj : Rn → R (j = 1, 2, . . . ,m), the symbol & could be =, ≥, or ≤, and S ⊆ Rn.

Definition 4.2 The feasible set Q of (1) is

Q = {x ∈ S | fj(x) & 0, (j = 1, 2, . . . ,m)}.

In the following, we assume S ≡ Rn.

• If Q ≡ Rn, (1) is a unconstrained optimization problem.

• If Q ⊊ Rn, (1) is a constrained optimization problem.

• If all functionals f(x), fj(x) are differentiable, (1) is a smooth optimization problem.

• If one of functionals f(x), fj(x) is non-differentiable, (1) is a nonsmooth optimization problem.

• If all constraints are linear fj(x) = ⟨aj ,x⟩ + bj (j = 1, 2, . . . ,m), (1) is a linear constrained
optimization problem.
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– In addition, if f(x) is linear, (1) is a linear programming problem.

– In addition, if f(x) is quadratic, (1) is a quadratic programming problem.

• If f(x), fj(x) (j = 1, 2, . . . ,m) are quadratic, (1) is a quadratically constrained quadratic
programming problem.

Definition 4.3 x∗ is called a global optimal solution of (1) if f(x∗) ≤ f(x), ∀x ∈ Q. Moreover,
f(x∗) is called the global optimal value. x∗ is called a local optimal solution of (1) if there exists
an open ball B(x∗, ε) := {x ∈ Rn | ∥x − x∗∥2 < ε} such that f(x∗) ≤ f(x), ∀x ∈ B(x∗, ε) ∩ Q.
Moreover, f(x∗) is called a local optimal value.

4.2 Complexity Bound for a Global Optimization Problem on the Unit Box

Consider one of the simplest problems in optimization, that is, minimizing a function on the n-
dimensional box.{

minimize f(x)
subject to x ∈ Bn := {x ∈ Rn | 0 ≤ [x]i ≤ 1, i = 1, 2, . . . , n}. (2)

To be coherent, we use the ℓ∞-norm:

∥x∥∞ = max
1≤i≤n

|[x]i|.

Let us also assume that f(x) is Lipschitz continuous on Bn:

|f(x)− f(y)| ≤ L∥x− y∥∞, ∀x,y ∈ Bn.

Let us define a very simple method to solve (2), the uniform grid method.

Given a positive integer p > 0,

1. Form (p+ 1)n points

xi1,i2,...,in =

(
i1
p
,
i2
p
, . . . ,

in
p

)T

where (i1, i2, . . . , in) ∈ {0, 1, . . . , p}n.

2. Among all points xi1,i2,...,in , find a point x̄ which has the minimal value for the
objective function.

3. Return the pair (x̄, f(x̄)) as the result.

Theorem 4.4 Let f(x∗) be the global optimal value for (2). Then the uniform grid method yields

f(x̄)− f(x∗) ≤ L

2p
.

Proof:
Let x∗ be a global optimal solution. Then there are coordinates (i1, i2, . . . , in) such that x :=

xi1,i2,...,in ≤ x∗ ≤ xi1+1,i2+1,...,in+1 =: y. Observe that [y]i − [x]i = 1/p for i = 1, 2, . . . , n and
[x∗]i ∈ [[x]i, [y]i] (i = 1, 2, . . . , n).

Consider x̂ = (x+ y)/2 and form a new point x̃ as:

[x̃]i :=

{
[y]i, if [x∗]i ≥ [x̂]i
[x]i, otherwise.
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It is clear that |[x̃]i − [x∗]i| ≤ 1/(2p) for i = 1, 2, . . . , n. Then ∥x̃ − x∗∥∞ = max
1≤i≤n

|[x̃]i − [x∗]i| ≤

1/(2p). Since x̃ belongs to the grid,

f(x̄)− f(x∗) ≤ f(x̃)− f(x∗) ≤ L∥x̃− x∗∥∞ ≤ L/(2p).

Let us define our goal

Find x ∈ Bn such that f(x)− f(x∗) < ε.

Corollary 4.5 The number of iterations necessary for the problem (2) to achieve the above goal
using the uniform grid method is at most(⌊

L

2ε

⌋
+ 2

)n

.

Proof:
Take p = ⌊L/(2ε)⌋ + 1. Then, p > L/(2ε) and from the previous theorem, f(x̄) − f(x∗) ≤

L/(2p) < ε. Observe that we constructed (p+ 1)n points.

Consider the class of problems P defined as follows:

Model: min
x∈Bn

f(x),

f(x) is ℓ∞-Lipschitz continuous on Bn.
Oracle: Only function values are available
Approximate solution: Find x̄ ∈ Bn such that f(x̄)− f(x∗) < ε

Theorem 4.6 For ε < L
2 , the number of iterations necessary for the class of problems P using any

method which uses only function evaluations is always at least (⌊ L
2ε⌋)

n.

Proof:
Let p = ⌊ L

2ε⌋ (which is ≥ 1 from the hypothesis).
Suppose that there is a method which requires N < pn calls of the oracle to solve the problem

in P.
Then, there is a point x̂ ∈ Bn = {x ∈ Rn | 0 ≤ [x]i ≤ 1, i = 1, 2, . . . , n} where there is no test

points in the interior of B := {x | x̂ ≤ x ≤ x̂+ e/p} where e = (1, 1, . . . , 1)T ∈ Rn.
Let x∗ := x̂+ e/(2p) and consider the function f̄(x) := min{0, L∥x− x∗∥∞ − ε}. Clearly, f̄ is

ℓ∞-Lipschitz continuous with constant L and its global minimum is −ε. Moreover, f̄(x) is non-zero
valued only inside the box B′ := {x | ∥x− x∗∥∞ ≤ ε/L}.

Since 2p ≤ L/ε, B′ ⊆ {x | ∥x− x∗∥∞ ≤ 1/(2p)} = B.
Therefore, f̄(x) is equal to zero to all test points of our method and the accuracy of the method

is ε.
If the number of calls of the oracle is less than pn, the accuracy can not be better than ε.

Theorem 4.6 supports the claim that the general optimization problem is unsolvable.

Example 4.7 Consider a problem defined by the following parameters. L = 2, n = 10, and
ε = 0.01.
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