
1

Practical Parallel Computing
(実践的並列コンピューティング)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Part2: GPU (4)
June 8, 2020



Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming 

 4 classes
 Part 2: GPU programming

 4 classes We are here (4/4)
 OpenACC (1.5 classes) and CUDA (2.5 classes)

 Part 3: MPI for distributed memory programming
 3 classes

2



Comparing OpenMP/OpenACC/CUDA
OpenMP OpenACC CUDA

Processors CPU CPU+GPU
File extension .c, .cc .cu

To start parallel 
(GPU) region

#pragma omp 
parallel

#pragma acc kernels func<<<…, …>>>()

To specify # of 
threads

export OMP_NUM 
_THREADS=…

(num_gangs, 
vector_length etc)

Desirable # of 
threads

# of CPU cores or 
less

# of GPU cores or “more”

To get thread ID omp_thread_num() - blockIdx, threadIdx
Parallel for loop #pragma omp for #pragma acc loop -

Task parallel #pragma omp task - -
To allocate device 

memory
- #pragma acc data cudaMalloc()

To copy to/from 
device memory

- #pragma acc data
#pragma acc update

cudaMemcpy()

Function on GPU - #pragma acc routine __global__,__device__
3

※ “# of XXX” = “The number of XXX”



“diffusion” Sample Program
related to [G1]
An example of diffusion phenomena:

The ink spreads gradually, and finally the density 
becomes uniform   (Figure by Prof. T. Aoki)

Available at /gs/hs1/tga-ppcomp/20/diffusion/

• Execution：./diffusion [nt]
• nt: Number of time steps



Discussion on diffusion 
sample (related to [G1])

5

An Array for “even” steps An Array for “odd” steps

NX

NY

Both arrays have to be on GPU device memory 
when computations are done



Consideration of Parallelizing 
Diffusion with CUDA
related to [G1]
 x, y loops can be parallelized
 t loop cannot be parallelized

6

for (t = 0; t < nt; t++) {

for (y = 1; y < NY-1; y++) {

for (x = 1; x < NX-1; x++) {

:
}

}

}

GPU computation must be 
a distinct function 
(GPU kernel function)

It’s better to transfer
data out of t-loop

[Data transfer from CPU to GPU]

[Data transfer from GPU to CPU]



Considering CUDA Threads
 How do we design threads on CUDA?
 There several choices in [G1]

 1thread = 1row
 We use NY threads in total  only x-loop in kernel function

 1thread = 1column
 We use NX threads in total  only y-loop in kernel function

 1thread = 1element
 We use NX NY threads in total  No loop in kernel function!
 This looks fast since the number of threads is very large

7



Mapping between Threads and 
Data

C

N

M

mm-cuda:
Matrices has 
column-major format

diffusion:
2D array has 
row-major format

CUDA threads

??

j = blockIdx.y * blockDim.y + 
threadIdx.y;
i = blockIdx.x * blockDim.x + 
threadIdx.x;   
: This thread computes Cij

NX

NY

y = blockIdx.y * blockDim.y + 
threadIdx.y;
x = blockIdx.x * blockDim.x + 
threadIdx.x;   
: This thread computes[y][x]

[Q] What if the dimensions are exchanged?



Considering gridDim/blockDim (1)

func <<< dim3 (?, ?, ?), dim3 (?, ?, ?) >>>(…);

9

gridDim blockDim
(1) We decide total number of threads
 (NX, NY, 1) threads
• See notes on the next page

(2) We tune each block size (blockDim)
Good candidates are (4, 4, 1), (8, 8, 1), (16, 16, 1), 

(32, 32, 1)
• The number must be ≦ 1024
• How about non-square blocks?

(3) Then block number (gridDim) is determined
We should consider indivisible cases



Considering gridDim/blockDim (2)

 In diffusion, Points [1, NX-1)×[1, NY-1), 
excluded boundary, should be computed
There are choices:
(A) Create NX x NY threads
 Thread (x,y) computes (x,y)
 Threads with below IDs do nothing

 x == 0 or y == 0 or x ≧ NX-1 or y ≧ NY-1
(B) Create (NX-2) x (NY-2) threads
 Thread (x,y) computes (x+1,y+1)
 Threads with below IDs do nothing

 x ≧ NX-2 or y ≧ NY-2

10

(A)

(B)



Discussion on Data Transfer
of Diffusion

11

[Data transfer from CPU to GPU]

for (t = 0; t < nt; t++) {

:  

for (y = 1; y < NY-1; y++) {

for (x = 1; x < NX-1; x++) {

:
}

}

}

[Data transfer from GPU to CPU]

for (t = 0; t < nt; t++) {

:  

[Data transfer from CPU to GPU]

for (y = 1; y < NY-1; y++) {

for (x = 1; x < NX-1; x++) {

:
}

}

[Data transfer from GPU to CPU]

}

Both codes will work, but how about speeds?

Computation: O(NX NY nt)
Transfer: O(NX NY)

Computation: O(NX NY nt)
Transfer: O(NX NY nt)



Speed of GPU Programs and 
GPU Architecture
 How should block-size be determined?

 How should each thread access memory?
 In mm-cuda, (x = row,y = col) and (x = col, y = row) 

shows different speed

12

When creating 1,000,000 threads,
• <<<1, 1000000>>> causes an error

• blockDim must be <= 1024
• <<<1000000, 1>>> can work, but slowWhy?

Knowledge of GPU architecture helps understanding
of speeds



Why Do We Have to Specify both 
gridDim and blockDim?

13

 and why did NVIDIA decide so?
 Hierarchical structure of GPU processor is considered

1 GPU = 56 SMXs
1 SMX = 64 CUDA cores

(16 cores x 4 groups)

 1GPU=3,584 CUDA cores

Structure of P100 GPU
(16nm, 15Billion transistors)



Mapping between Threads and 
Cores

14

 1 thread blocks (or more) run on 1 SMX
 At least 56 blocks are needed to use all SMXs on P100
 gridDim (gx*gy*gz) should be ≧56

 1 thread (or more) run on a CUDA core
 At least 56*64=3584 threads in total are needed to use all CUDA 

cores on P100
 Total threads (gx*gy*gz * bx*by*bz) should be ≧3584

 32 consective threads (in a block) are batched (called a 
warp) and scheduled
 At least 32 threads per block are needed for performance
 blockDim (bx*by*bz) should be ≧32



Warp: Internal Execution Unit

Threads in a thread block are internally divided into “warp”, a group of 
contiguous 32 threads
32 threads in a warp always are executed synchronously

They execute the same instruction simultaneously
Only 1 program counter for 32 threads  GPU hardware is simplified
Actually 32 threads are executed on 16 CUDA cores

15

thread < warp < thread block < grid

ThreadIdx.x 0     1                    31        32    33                  63 

Time



Observations due to Warps
 If number of threads per block (blockDim) is not 32 x n, it 

is inefficient
 Even if blockDim=1, the system creates a warp for it

 Characteristics in memory addresses accessed by 
threads in a warp affect the performance
 Coalesced accesses are fast

16

※ In multi-dimensional cases (blockDim.y>1 
or blockDim.z>1), “neighborhood” is defined 
by x-dimension



Coalesced Memory Access
 When threads in a warp access “neighbor” address 

on memory (coalesced access), it is more efficient

Coalesced access
 Faster

Non-coalesced access
 Slower



Accesses in mm-cuda Sample
 mm-cuda: (x = row,y = col)  coalesced and fast
 mm-nc-cuda: (x = col, y = row)  non-coalesced and slow

18

We should see “what data are accessed by threads in a 
warp simultaneously”

matrices in column-major format

Fast Slow



Why #threads >> #cores Works 
Well on GPUs?
 GPU supports very fast (~1 clock) context switches
With many threads, memory access latency can be hidden

19

#threads == #cores
CUDA cores Device memory

#threads > #cores
CUDA cores Device memory

Ti
m

e

Ti
m

e



Considering Branches in 
Parallel Programs

Consider this code. How long is execution time?
if (thread-id % 2 == 0) {

:  // (A) 30msec

} else {

:  // (B) 20msec

}

20

On CPU (OpenMP)

(A) (A)(B) (B)
30ms

On GPU, threads in a warp
must execute the same instruction.
What happens?



Branches on GPU (1)
:
:

if (thread-id % 2 == 0) {
:
:
:

} else {
:
:
:

}
:
:

Some threads are made sleep
Both “then” and “else” are executed!

 Answer to previous 
question is 50ms !

※ Similar cases happen in
for, while…



Branches on GPU (2)
 As exceptional cases, if threads in a warp “agree” in 

branch condition, either “then” part or “else” part is 
executed  Efficient!

 If there is difference of opinion (previous page), it is 
called a divergent branch

 Agreement among buddies (threads in a warp) is 
important for speed

22



Considering Data Transfer Costs

Example case: We are going to multiple matrix 
multiplications.
Input data are on host memory

 C1 = A1 × B1
 C2 = A2 × B2 

….
 Cn = An × Bn

In default, GPU cannot compute during transfer
 cudaStream is useful for hiding transfer costs

This is also useful for speed-up of mm-cuda, by 
dividing matrices into pieces

23

CPU GPU

Comp

Transfer

Comp



Asynchronous Executions with 
cudaStream (1)

24

What are streams?
GPU’s “service counters” that accept tasks from CPU

 Each stream looks like a queue
“Tasks” from CPU to GPU include

 Data transfer (Host Device)
 GPU kernel function call
 Data transfer (Device Host)

CPU GPU

Ask 
something

stream

All of sample programs are using the ”default stream”



Asynchronous Executions with 
cudaStream (2)

25

cudaMemcpyAsync(dst, src, size, type, str);
Data transfer using a specific stream

Create a stream
cudaStream_t str;
cudaStreamCreate(&str); // Create a stream

func<<<gs, bs, 0, str>>>( … );
// 3rd parameter is related to for “shared memory”

Call GPU kernel function using a stream

Wait until all tasks on a stream are finished
cudaStreamSynchronize(str);



How GPU does Tasks

 Tasks on the same stream is done in FIFO
 If tasks are in different streams, and have different kinds, 

they may be done simultaneously
 Kinds: HD, kernel, DH
 Note: If tasks are in the same kind, no speed up

26

CPU GPU
Ask

stream



Speed Up with Overlap of 
Computation and Transfer

n streams can be used for n independent 
tasks

 C1 = A1 × B1 (includes H->D, Calc, D->H)
 C2 = A2 × B2 

….
 Cn = An × Bn

 We will see speed up since
(Total comp time + Total trans time)
is improved to
max(Total comp time, Total trans time)

27

CPU GPU
transfer

This is not a unique solution;
Use 2 or 3 streams repeatedly  we can save 
memory and stream resources



More Things to Study
 Using CUDA shared memory

 fast and small memory than device memory
 Unified memory in recent CUDA

 cudaMemcpy can be omitted for automatic data transfer
 Using Tensor-core to accelerate deep learning

 Only on V100 GPUs or later
 Unfortunately, TSUBAME3 has older P100 

 Using multiple GPUs towards petascale computation
 MPI+CUDA, MPI+OpenACC

 More and more…

28



29

Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 18 (Thursday)

[G1] Parallelize “diffusion” sample program by 
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “mm-cuda” in 
detail

[G3] (Freestyle) Parallelize any program by OpenACC 
or CUDA.



30

Next Class:
 MPI Programming (1)
 Introduction to distributed memory parallel 

programming


	Practical Parallel Computing�(実践的並列コンピューティング)�
	Overview of This Course
	Comparing OpenMP/OpenACC/CUDA
	“diffusion” Sample Program�related to [G1]
	Discussion on diffusion sample (related to [G1])
	Consideration of Parallelizing Diffusion with CUDA�related to [G1]
	Considering CUDA Threads
	Mapping between Threads and Data
	Considering gridDim/blockDim (1)
	Considering gridDim/blockDim (2)
	Discussion on Data Transfer�of Diffusion
	Speed of GPU Programs and GPU Architecture
	Why Do We Have to Specify both gridDim and blockDim?
	Mapping between Threads and Cores
	Warp: Internal Execution Unit
	Observations due to Warps
	Coalesced Memory Access
	Accesses in mm-cuda Sample
	Why #threads >> #cores Works Well on GPUs?
	Considering Branches in Parallel Programs
	Branches on GPU (1)
	Branches on GPU (2)
	Considering Data Transfer Costs
	Asynchronous Executions with cudaStream (1)
	Asynchronous Executions with cudaStream (2)
	How GPU does Tasks
	Speed Up with Overlap of Computation and Transfer
	More Things to Study
	Assignments in GPU Part�(Abstract)
	Next Class:

