## Practical Parallel Computing (実践的並列コンピューティング)

Part2: GPU (4) June 8, 2020

> Toshio Endo School of Computing & GSIC endo@is.titech.ac.jp



## **Overview of This Course**

- Part 0: Introduction
  - 2 classes
- Part 1: OpenMP for shared memory programming
  - 4 classes
- Part 2: GPU programming

  - OpenACC (1.5 classes) and CUDA (2.5 classes)
- Part 3: MPI for distributed memory programming
  - 3 classes

#### **Comparing OpenMP/OpenACC/CUDA**

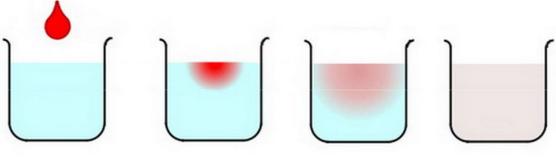


|                                   | OpenMP                       | OpenACC                                | CUDA                |
|-----------------------------------|------------------------------|----------------------------------------|---------------------|
| Processors                        | CPU                          | CPU+GPU                                |                     |
| File extension                    | .C, .CC                      |                                        | .cu                 |
| To start parallel<br>(GPU) region | #pragma omp<br>parallel      | #pragma acc kernels                    | func<<<,>>>()       |
| To specify # of<br>threads        | export OMP_NUM<br>_THREADS=… | (num_gangs,<br>vector_length etc)      |                     |
| Desirable # of<br>threads         | # of CPU cores or<br>less    | # of GPU cores or "more"               |                     |
| To get thread ID                  | omp_thread_num()             | -                                      | blockldx, threadIdx |
| Parallel for loop                 | #pragma omp for              | #pragma acc loop                       | -                   |
| Task parallel                     | #pragma omp task             | -                                      | -                   |
| To allocate device memory         | -                            | #pragma acc data                       | cudaMalloc()        |
| To copy to/from device memory     | -                            | #pragma acc data<br>#pragma acc update | cudaMemcpy()        |
| Function on GPU                   | -                            | #pragma acc routine                    | global,device       |

\* "# of XXX" = "The number of XXX"

#### "diffusion" Sample Program related to [G1]

An example of diffusion phenomena:



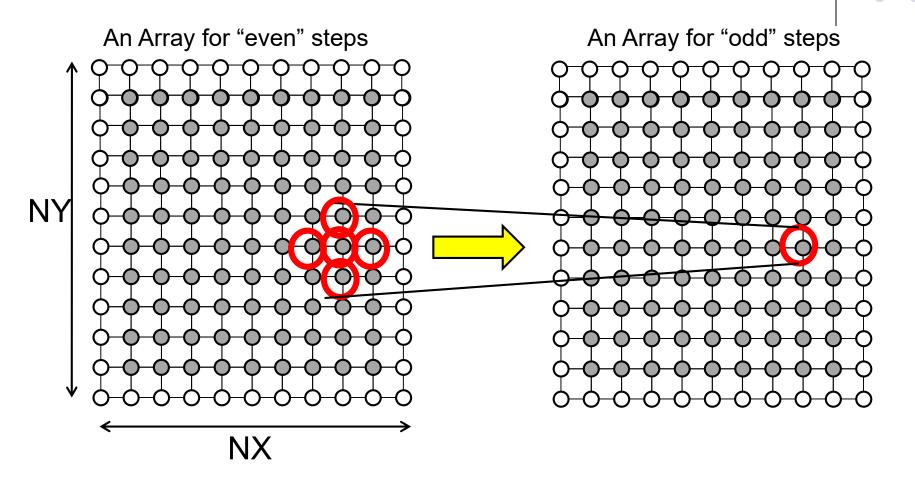
The ink spreads gradually, and finally the density becomes uniform (Figure by Prof. T. Aoki)

Available at /gs/hs1/tga-ppcomp/20/diffusion/

- Execution:./diffusion [nt]
  - nt: Number of time steps



### **Discussion on diffusion sample** (related to [G1])

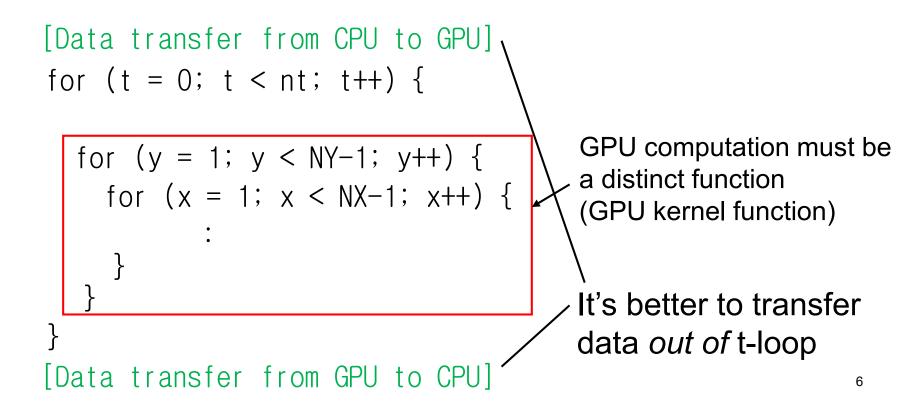


Both arrays have to be on GPU device memory when computations are done

#### Consideration of Parallelizing Diffusion with CUDA related to [G1]

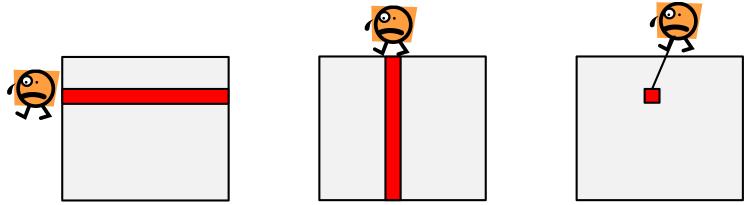


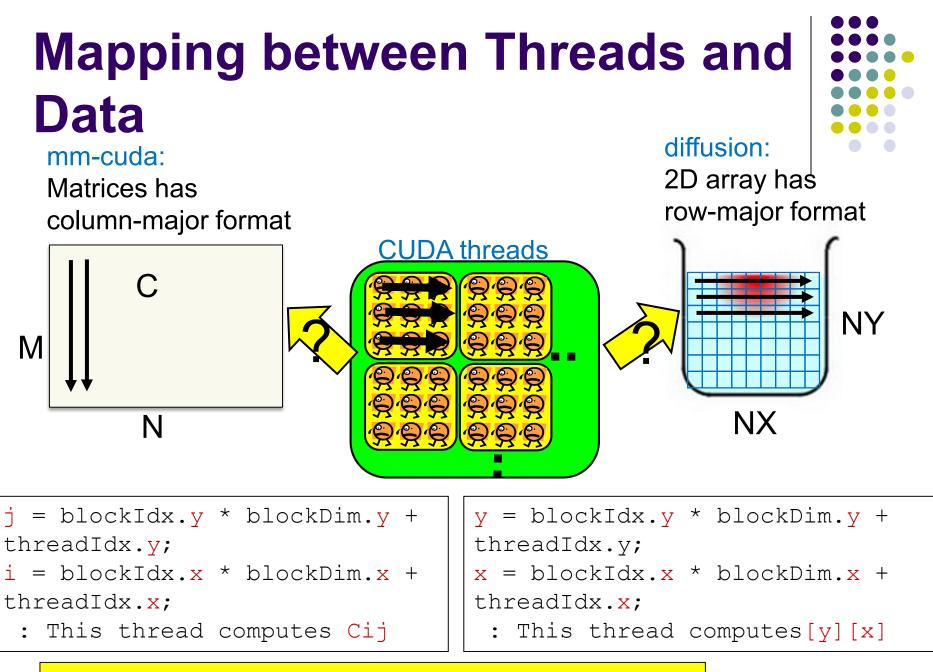
- x, y loops can be parallelized
- t loop cannot be parallelized



## **Considering CUDA Threads**

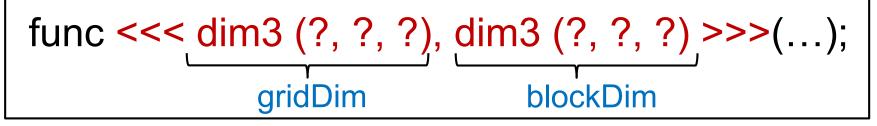
- How do we design threads on CUDA?
- There several choices in [G1]
  - 1thread = 1row
    - We use NY threads in total  $\rightarrow$  only x-loop in kernel function
  - 1thread = 1column
    - We use NX threads in total  $\rightarrow$  only y-loop in kernel function
  - 1thread = 1element
    - We use NX NY threads in total  $\rightarrow$  No loop in kernel function!
    - This looks fast since the number of threads is very large

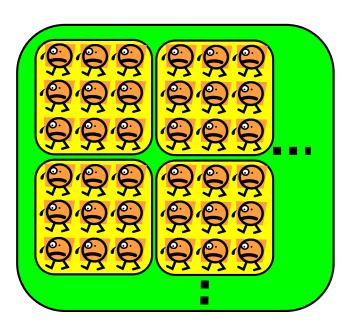




[Q] What if the dimensions are exchanged?

#### **Considering gridDim/blockDim (1)**





(1) We decide total number of threads

- $\rightarrow$  (NX, NY, 1) threads
- See notes on the next page

(2) We tune each block size (blockDim)

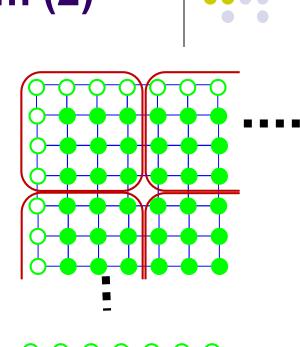
- → Good candidates are (4, 4, 1), (8, 8, 1), (16, 16, 1), (32, 32, 1)
- The number must be  $\leq 1024$
- How about non-square blocks?
- (3) Then block number (gridDim) is determined We should consider indivisible cases 9

#### **Considering gridDim/blockDim (2)**

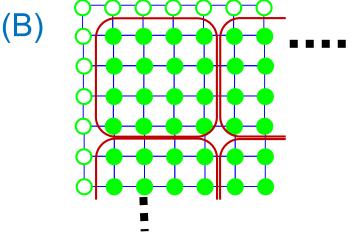
 In diffusion, Points [1, NX-1) × [1, NY-1), <u>excluded boundary</u>, should be computed There are choices:

(A) Create NX x NY threads

- Thread (x,y) computes (x,y)
- Threads with below IDs do nothing
  - x == 0 or y == 0 or  $x \ge NX-1$  or  $y \ge NY-1$
- (B) Create (NX-2) x (NY-2) threads
- Thread (x,y) computes (x+1,y+1)
- Threads with below IDs do nothing
  - $x \ge NX-2$  or  $y \ge NY-2$



(A)





## Discussion on Data Transfer of Diffusion

Both codes will work, but how about speeds?

}

[Data transfer from CPU to GPU]
for (t = 0; t < nt; t++) {</pre>

. [Data transfer from GPU to CPU]

```
Computation: O(NX NY nt)
Transfer: O(NX NY)
```

for (t = 0; t < nt; t++) {

[Data transfer from CPU to GPU]
for (y = 1; y < NY-1; y++) {
 for (x = 1; x < NX-1; x++) {
 :
 }
}</pre>

[Data transfer from GPU to CPU]

Computation: O(NX NY nt) Transfer: O(<u>NX NY nt</u>)

## Speed of GPU Programs and GPU Architecture

• How should block-size be determined?

When creating 1,000,000 threads,

- <<<1, 1000000>>> causes an error
  - blockDim must be <= 1024
- <<<1000000, 1>>> can work, but slow  $\rightarrow$  Why?
- How should each thread access memory?
  - In mm-cuda, (x = row,y = col) and (x = col, y = row) shows different speed

## Knowledge of GPU architecture helps understanding of speeds



## Why Do We Have to Specify both gridDim and blockDim?

- and why did NVIDIA decide so?
- → Hierarchical structure of GPU processor is considered

<del>QQ</del>Ç

Structure of P100 GPU (16nm, 15Billion transistors)

1 GPU = 56 SMXs 1 SMX = 64 CUDA cores (16 cores x 4 groups)

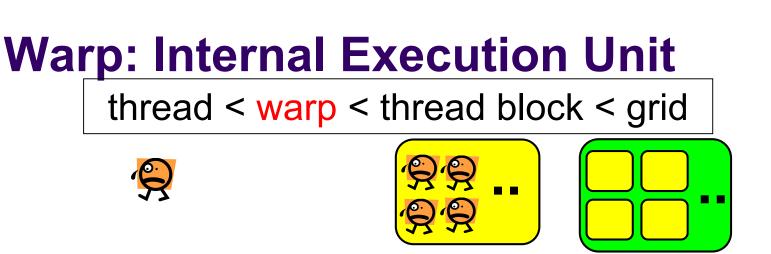
→ 1GPU=3,584 CUDA cores



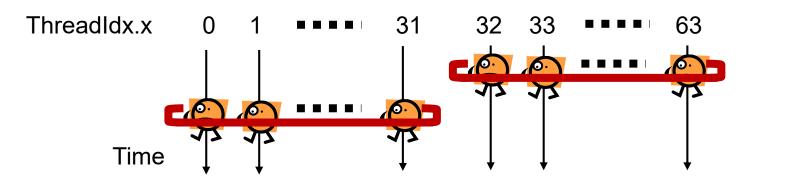
## Mapping between Threads and Cores

- 1 thread blocks (or more) run on 1 SMX
  - → At least 56 blocks are needed to use all SMXs on P100
  - → gridDim (gx\*gy\*gz) should be  $\geq$  56
- 1 thread (or more) run on a CUDA core
  - → At least 56\*64=3584 threads in total are needed to use all CUDA cores on P100
  - → Total threads (gx\*gy\*gz \* bx\*by\*bz) should be  $\geq$ 3584
- 32 consective threads (in a block) are batched (called a <u>warp</u>) and scheduled
  - → At least 32 threads per block are needed for performance
  - → blockDim (bx\*by\*bz) should be  $\geq$  32





- •Threads in a thread block are internally divided into "warp", a group of contiguous 32 threads
- •32 threads in a warp always are executed synchronously
  - They execute the same instruction simultaneously
  - •Only 1 program counter for 32 threads  $\rightarrow$  GPU hardware is simplified
  - •Actually 32 threads are executed on 16 CUDA cores



### **Observations due to Warps**



- If number of threads per block (blockDim) is not 32 x n, it is inefficient
  - Even if blockDim=1, the system creates a warp for it
- Characteristics in memory addresses accessed by threads in a warp affect the performance
  - Coalesced accesses are fast

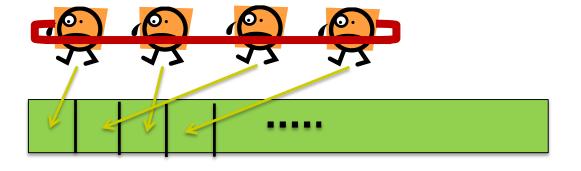


※ In multi-dimensional cases (blockDim.y>1 or blockDim.z>1), "neighborhood" is defined by x-dimension

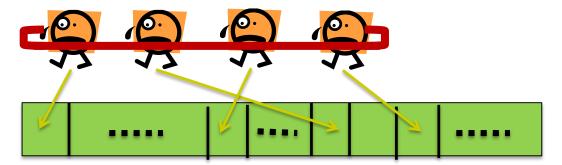
#### **Coalesced Memory Access**

• When threads in a warp access "neighbor" address on memory (coalesced access), it is more efficient

Coalesced access → Faster



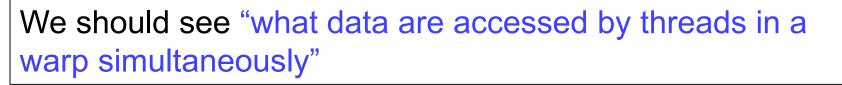
Non-coalesced access
Slower

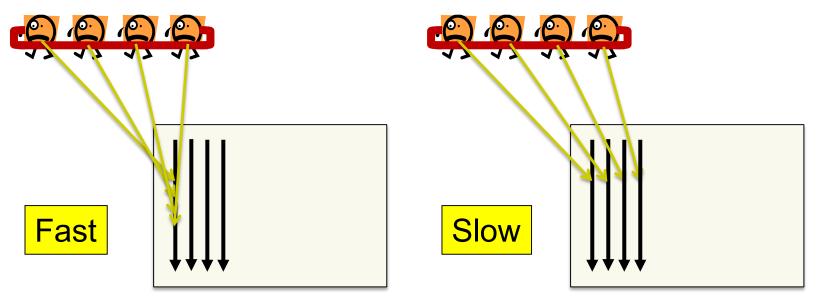




#### Accesses in mm-cuda Sample

- mm-cuda: (x = row,y = col)  $\rightarrow$  coalesced and fast
- mm-nc-cuda: (x = col, y = row)  $\rightarrow$  non-coalesced and slow

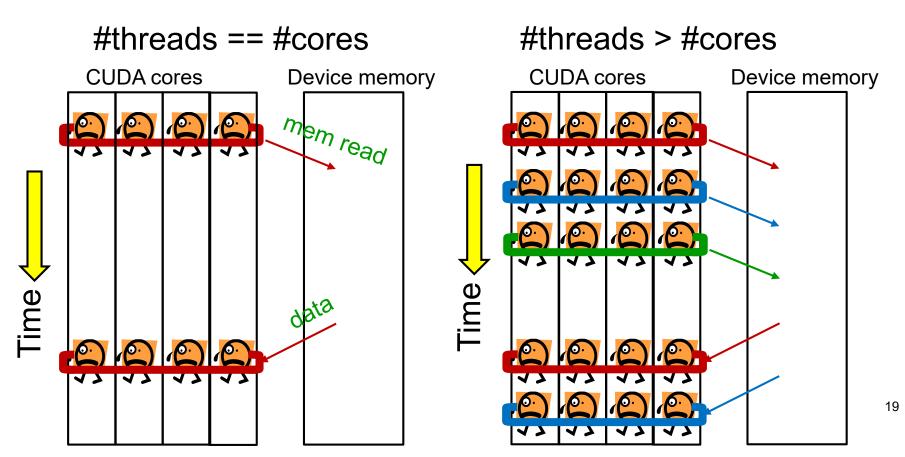




matrices in column-major format

### Why #threads >> #cores Works Well on GPUs?

GPU supports very fast (~1 clock) context switches
 With many threads, memory access latency can be hidden



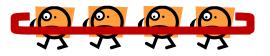
### **Considering Branches in Parallel Programs**

Consider this code. How long is execution time?

if (thread-id % 2 == 0) {
 : // (A) 30msec
} else {
 : // (B) 20msec
}

On CPU (OpenMP) (A) (B) (A) (B) 30ms

On GPU, threads in a warp must execute the same instruction. What happens?





### Branches on GPU (1)

if (thread-id % 2 == 0) {

} else {

}

Some threads are made sleep Both "then" and "else" are executed!

→ Answer to previous question is 50ms !



X Similar cases happen in for, while...

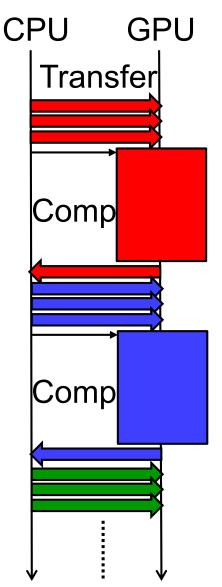
### **Branches on GPU (2)**



- As exceptional cases, if threads in a warp "agree" in branch condition, either "then" part or "else" part is executed → Efficient!
- If there is difference of opinion (previous page), it is called a divergent branch
- → Agreement among buddies (threads in a warp) is important for speed

#### **Considering Data Transfer Costs**





*Example case*: We are going to multiple matrix multiplications.

- Input data are on host memory
  - C1 = A1 × B1
  - C2 = A2 × B2
  - Cn = An × Bn

In default, GPU cannot compute during transfer
 > cudaStream is useful for hiding transfer costs

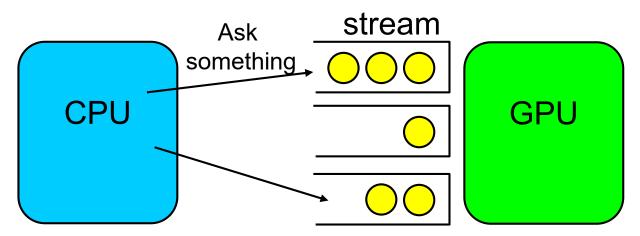
This is also useful for speed-up of mm-cuda, by dividing matrices into pieces

## Asynchronous Executions with cudaStream (1)

What are streams?

•GPU's "service counters" that accept tasks from CPU

- Each stream looks like a queue
- "Tasks" from CPU to GPU include
  - Data transfer (Host → Device)
  - GPU kernel function call
  - Data transfer (Device  $\rightarrow$  Host)



All of sample programs are using the "default stream"



## Asynchronous Executions with cudaStream (2)

Create a stream

cudaStream\_t str;

cudaStreamCreate(&str); // Create a stream

Data transfer using a specific stream

cudaMemcpyAsync(dst, src, size, type, str);

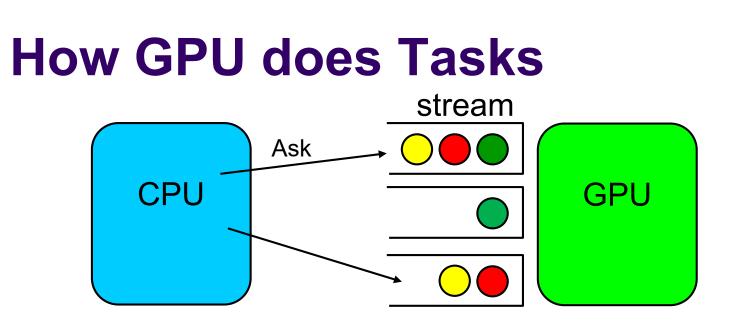
Call GPU kernel function using a stream

func<<<gs, bs, 0, str>>>( ... );

// 3rd parameter is related to for "shared memory"

Wait until all tasks on a stream are finished

cudaStreamSynchronize(str);



- Tasks on the same stream is done in FIFO
- If tasks are in different streams, and have different kinds, they may be done simultaneously
  - Kinds:  $H \rightarrow D$ , kernel,  $D \rightarrow H$
  - Note: If tasks are in the same kind, no speed up

# Speed Up with Overlap of Computation and Transfer

n streams can be used for n independent tasks

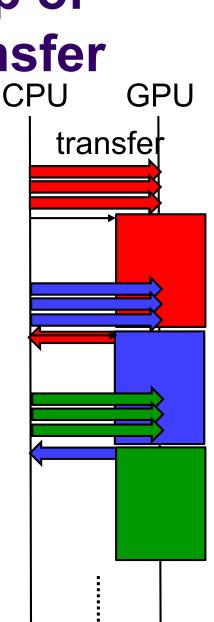
- $C1 = A1 \times B1$  (includes H->D, Calc, D->H)
- C2 = A2 × B2
- $Cn = An \times Bn$
- → We will see speed up since

(Total comp time + Total trans time)

is improved to

max(Total comp time, Total trans time)

This is not a unique solution; Use 2 or 3 streams repeatedly  $\rightarrow$  we can save memory and stream resources



### **More Things to Study**

- Using CUDA shared memory
  - fast and small memory than device memory
- Unified memory in recent CUDA
  - cudaMemcpy can be omitted for automatic data transfer
- Using Tensor-core to accelerate deep learning
  - Only on V100 GPUs or later
  - Unfortunately, TSUBAME3 has older P100 ⊗
- Using multiple GPUs towards petascale computation
  - MPI+CUDA, MPI+OpenACC
- More and more...



#### Assignments in GPU Part (Abstract)

Choose <u>one of [G1]</u>—[G3], and submit a report Due date: June 18 (Thursday)

[G1] Parallelize "diffusion" sample program by OpenACC or CUDA

## [G2] Evaluate speed of "mm-acc" or "mm-cuda" in detail

[G3] (Freestyle) Parallelize *any* program by OpenACC or CUDA.



### **Next Class:**

- MPI Programming (1)
  - Introduction to distributed memory parallel programming

