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Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming 

 4 classes
 Part 2: GPU programming

 4 classes We are here (2/4)
 OpenACC (1.5 classes) and CUDA (2.5 classes)

 Part 3: MPI for distributed memory programming
 3 classes
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Data Region and Kernel 
Region in OpenACC

 Data movement occurs at beginning and end of data region
 Data region may contain 1 or more kernel regions 3

int main()
{

A;
#pragma acc data copy(x,y)

{
#pragma acc kernels

{
B;

}
C;

#pragma acc kernels
D;

}
E;

}

A

B

C

D

E

CPU GPU
Copy x,y

CPU GPU

Copy x,y
CPU GPU

Data
Region

Kernel
regions



“diffusion” Sample Program
related to [G1]
An example of diffusion phenomena:

The ink spreads gradually, and finally the density 
becomes uniform   (Figure by Prof. T. Aoki)

Available at /gs/hs1/tga-ppcomp/20/diffusion/

• Execution：./diffusion [nt]
• nt: Number of time steps
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Data Structure in “diffusion”
An Array for “even” steps An Array for “odd” steps

NX

NY



Consideration of Parallelizing 
Diffusion with OpenACC
related to [G1]
 x, y loops can be parallelized

 We can use “#pragma acc loop” twice
 t loop cannot be parallelized
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for (t = 0; t < nt; t++) {

for (y = 1; y < NY-1; y++) {

for (x = 1; x < NX-1; x++) {

:
}

}

}

Kernel region on GPU
Parallel x, y loops

It’s better to transfer
data out of t-loop

[Data transfer from CPU to GPU]

[Data transfer from GPU to CPU]



data Clause for Multi-
Dimensional arrays
float A[2000][1000];  an example of a 2-dimension array

…. data copy(A)
 OK, all elements of A are copied

…. data copy(A[0:2000][0:1000])
 OK, all elements of A are copied

…. data copy(A[500:600][0:1000])
 OK, rows[500,1100) are copied

…. data copy(A[0:2000][300:400])
 NG in current OpenACC
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※ Currently, OpenACC does not support non-consecutive transfer



Notes on Assignment [G1]
 You will need compiler options different from the 

diffusion directory for OpenACC
 You can use files in diffusion-acc directory as basis

 “Makefile” in this directory supports compiler options for 
OpenACC

 Don’t forget “module load cuda pgi” before “make”
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Data Update inside Data Region
 Data on GPU can be 

updated with “acc update” 
inside data region
 Also “acc update” can work 

with “acc enter data” , “acc exit 
data” (appear later)

 “acc update” is still different 
from “acc data”
 “acc data” may create/delete 

copy on GPU
 “acc update” does not; it 

assumes the copy already 
presents 9By Akira Naruse, NVIDIA

※ acc parallel works like acc kernels



mm-acc/mm.c is Updated
related to [G2]

 The new version is around 3 times faster, please use this 
version in [G2]
 and faster than mm-jil-acc
 Currently I cannot explain the reason  10

#pragma acc loop independent

for (j = 0; j < n; j++) {

#pragma acc loop seq

for (l = 0; l < k; l++) {

#pragma acc loop independent

for (i = 0; i < m; i++) {

double ail = A[i+l*lda];

double blj = B[l+j*ldb];

C[i+j*ldc] += ail*blj;

}}}

#pragma acc loop independent

for (j = 0; j < n; j++) {

#pragma acc loop seq

for (l = 0; l < k; l++) {

double blj = B[l+j*ldb];

#pragma acc loop independent

for (i = 0; i < m; i++) {

double ail = A[i+l*lda];

C[i+j*ldc] += ail*blj;

}}}



Data Transfer Costs in GPU 
Programming
 In GPU programming, 

data transfer costs 
between CPU and GPU
have impacts on speed
 Program speed may be 

slower than expected 

11Let’s discuss impacts of transfer in mm-acc

A

B

C

D

E

CPU GPU
Copy x,y

CPU GPU

Copy x,y
CPU GPU



Speed of GPU Programs: 
case of mm-acc

In mm-acc, speed in Gflops is computed by
S = 2mnk / Ttotal

Ttotal includes both computation time and 
transfer 
 S counts slow-down by transfer

To see the effects, let’s try another sample
/gs/hs1/tga-ppcomp/20/mm-meas-acc
which outputs time for 
copyin (transfer A, B, C)
computation
copyout (transfer C)
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CPU GPU

Compu-
tation

Transfer
A, B, C

Transfer
C

Initialization

Ttotal Tcomp

In [G2], please evaluate effects of transfer costs



Another Description Way for 
Data Copy

 With “data” directive, copy timing is restricted
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// x,y are on CPU

#pragma acc data copy(x,y)
{

// x,y are on GPU
}

// x,y are on CPU

// x,y are on CPU

#pragma acc enter data copyin(x,y)

// x,y are on GPU

#pragma acc exit data copyout(x,y)
// x,y are on CPU

We can copy data anytime by “acc enter data”, ”acc 
exit data” directives

How can we measure transfer time?



Discussion on 
Data Transfer Costs

 Time for data transfer Ttrans ≒ M / B + L
 M: Data size in bytes
 B: “Bandwidth” (speed)
 L: “Latency” (if M is sufficiently large, we can ignore it)

 In a P100 GPU,
 Theoretical computation speed is 5.3TFlops
 Theoretical bandwidth B is 16GB/s (2G double values per second)
 Transfer of values is much slower than computation 
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Discussion on Computation 
and Transfer Costs

In mm-acc,
 Computation amount: O(mnk)
 Data transfer amount:

 A, B, C: CPU  GPU: O(mk+kn+mn)
 C: GPU  CPU: O(mn)

Transfer costs are relatively smaller with 
larger m, n, k
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CPU GPU

Computation

Transfer
A, B, C

Transfer
C

Initialization

In diffusion-acc [G1], how can we 
reduce transfer costs?



Function Calls from GPU
 Kernel region can call functions, but be careful
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int main()
{

#pragma acc kernels
{

… func(A[i]) …

}

}

#pragma acc routine
int func(int arg)
{

:
:
return …;

}

 “routine” directive is required by compiler to generate GPU code 



How about Library Functions?
 Available library functions is very limited 
 We cannot use strlen(), memcpy(), fopen()… 

 Exceptionally, some mathematical functions are ok 
 fabs, sqrt, fmax…
 #include <math.h> is needed

 Very recently, printf() in kernel regions is ok! 
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Now explanation of OpenACC is finished; we will go to CUDA



OpenACC and CUDA for GPUs
 OpenACC

 C/Fortran + directives (#pragma acc …), Easier programming
 PGI compiler works

 module load pgi
 pgcc –acc … XXX.c

 Basically for data parallel programs with for-loops 
 Only for limited types of algorithms 

 CUDA
 Most popular and suitable for higher performance
 Use “nvcc” command for compile

 module load cuda
 nvcc … XXX.cu

Programming is harder, but more general
19



An OpenACC Program Look Like
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int A[100], B[100];
int i;

#pragma acc data copy(A,B)
#pragma acc kernels
#pragma acc loop independent

for (i = 0; i < 100; i++) {
A[i] += B[i];

}

// After kernel region finishes, 
CPU can access to A[i],B[i]

Executed on GPU
in parallel



A CUDA Program Look Like
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int A[100], B[100];
int *DA, *DB;
int i;
cudaMalloc(&DA, sizeof(int)*100);
cudaMalloc(&DB, sizeof(int)*100);
cudaMemcpy(DA,A,sizeof(int)*100,

cudaMemcpyHostToDevice);
cudaMemcpy(DB,B,sizeof(int)*100,

cudaMemcpyHostToDevice);

add<<<20, 5>>>(DA, DB);

cudaMemcpy(A,DA,sizeof(int)*100,
cudaMemcpyDeviceToHost);

__global__ void add
(int *DA, int *DB)

{
int i = blockIdx.x*blockDim.x

+ threadIdx.x;
DA[i] += DB[i];

}

Executed on GPU
(called a kernel function)

Sample:
/gs/hs1/tga-ppcomp/20/add-cuda/

We have to separate code regions executed on CPU and GPU



Using add-cuda Sample

※ [Standard route] A log-in node does not have a GPU
 You can compile the sample there, but the program does 
not work! 22

[make sure that you are at a interactive node (r7i7nX) ]
module load cuda [Do once after login]
cd ~/t3workspace    [Example in web-only route]
cp -r /gs/hs1/tga-ppcomp/20/add-cuda .
cd add-cuda
make
[An executable file “add” is created]
./add
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Compiling CUDA Programs/
Submitting GPU Jobs
 Compile .cu file using the NVIDIA CUDA toolkit

 module load cuda
 and then use nvcc

Also see Makefile in the sample directory

 Job submission method is same as OpenACC version

#!/bin/sh
#$ -cwd
#$ -l q_node=1
#$ -l h_rt=00:10:00

./add

add-cuda/job.sh

qsub job.sh



Preparing Data on Device 
Memory
(1) Allocate a region on device memory
cf) cudaMalloc((void**)&DA, size);

(2) Copy data from host to device
cf) cudaMemcpy(DA, A, size, cudaMemcpyDefault);

24

CPU GPU

A (1) DA
Host memory Device memory

(2)

Note: cudaMalloc and cudaMemcpy must be called on CPU, NOT on GPU



Comparing OpenACC and 
CUDA
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OpenACC CUDA
Both allocation and copy are
done by acc data copyin

cudaMalloc and cudaMemcpy
are separated

One variable name A may
represent both
• A on host memory
• A on device memory

Programmer have to prepare
two pointers, such as A and DA

int A[100];
#pragma acc data copy(A)
#pragma acc kernels
{
… A[i] …

} on GPU

on CPU int A[100];
int *DA;
cudaMalloc(&DA, …);
cudaMemcpy(DA, A, …, …);
// Here CPU cannot access DA[i]

func<<<…, …>>>(DA, …);



Calling A GPU Kernel Function 
from CPU
 A region executed by GPU must be a distinct function

 called a GPU kernel function
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[CPU side]

func<<<20, 5>>>(…); __global__ void func(…)
{

:
return;

}

[GPU side]call

return

A GPU kernel function (called from CPU)
needs __global__ keyword
can take parameters
can NOT return value; return type must be void

# of thread blocks
# of threads per block
In this case, 20x5=100
threads run on GPU



Copying Back Data from GPU

 Copy data using cudaMemcpy
 cf) cudaMemcpy(A, DA, size, cudaMemcpyDefault);
 4th argument is one of

 cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost
 cudaMemcpyDeviceToDevice, cudaMemcpyHostToHost
 cudaMemcpyDefault    Detect memory type automatically 

 When a memory area is unnecessary, free it
 cf) cudaFree(DA);

27

A DA
Host memory Device memory
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Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 18 (Thursday)

[G1] Parallelize “diffusion” sample program by 
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “mm-cuda” in 
detail

[G3] (Freestyle) Parallelize any program by OpenACC 
or CUDA.
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Notes in Report Submission (1)

 Submit the followings via OCW-i
(1) A report document

 PDF, MS-Word or text file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 Try “zip” to submit multiple files
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Notes in Report Submission (2)

The report document should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or 
new functions

 Performance evaluation on TSUBAME
 With varying number of threads 
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available



FYI:
Event Announcement
GPU online minicamp
June 15 (Mon) – 16 (Tue)
Online (Slack & Zoom)
Professional mentors, including NVIDIA technical 
staffs, will help to solve issues on GPU 
programming

http://gpu-computing.gsic.titech.ac.jp/node/102
Application deadline: June 8
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http://gpu-computing.gsic.titech.ac.jp/node/102
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Next Class:
 GPU Programming (3)
 Multi-threads on CUDA
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