Practical Parallel Computing

(EERMAEFH A E1—T12))

Part2: GPU (2)
June 1, 2020

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Overview of This Course °

e Part O: Introduction
e 2 classes

e Part 1. OpenMP for shared memory programming
e 4 classes

e Part 2: GPU programming
e 4 classes € We are here (2/4)
e OpenACC (1.5 classes) and CUDA (2.5 classes)

e Part 3: MPI for distributed memory programming
e 3 classes

Data Region and Kernel ses.
Region in OpenACC +-
CPU GPU
i T nn
#prgéma acc data copy(x,y) i %
#prégma acc kernels : \
t : C Data
) > % y?egion
C, I
#pragg? acc kernels i %%%% < ‘Kernel
L CO . regions
) - E % CPU 2.GPU

e Data movement occurs at beginning and end of data region
e Data region may contain 1 or more kernel regions

“diffusion” Sample Program
related to [G1]

An example of diffusion phenomena:

BIMIEIE

The ink spreads gradually, and finally the density
becomes uniform (Figure by Prof. T. Aoki)

Available at /gs/hs1/tga-ppcomp/20/diffusion/

« Execution:./diffusion [nt]
* nt: Number of time steps

Data Structure in “diffusion”

An Array for even’ steps An Array for “odd” steps

NY

Consideration of Parallelizing

Diffusion with OpenACC
related to [G1]

e X, Yy loops can be parallelized

e We can use “#pragma acc loop” twice
e tloop cannot be parallelized

[Data transfer from CPU to GPU]\\

for (t = 0; t <nt; t+) {

for (y = 1; y < NY-1; y++)
for (x = 1; x < NX-1; x++

}

1 It's better to transfer

} data out of t-loop
[Data transfer from GPU to CPU] 6

{
) { Kernel region on GPU
Parallel x, y loops

data Clause for Multi-
Dimensional arrays

f loat A[2000][1000]; > an example of a 2-dimension array

.... data copy(A)

- OK, all elements of A are copied
.... data copy(A[0:2000][0:1000])

- OK, all elements of A are copied
.... data copy(A[500:600][0:1000])

- OK, rows[500,1100) are copied
.... data copy(A[0:2000][300:400])

- NG in current OpenACC

> Currently, OpenACC does not support non-consecutive transfer

Notes on Assignment [G1]

e You will need compiler options different from the
diffusion directory for OpenACC

e You can use files in diffusion-acc directory as basis

o “Makefile” in this directory supports compiler options for
OpenACC

e Don’t forget “module load cuda pgi” before “make”

Data Update inside Data Region | :

e Data on GPU can be [c/ee+]
updated with “acc update” A
inside data region iy b
e Also “acc update” can work X[1] += ...; /* GPU ¥/
. 11 ” 11 . }
with “acc enter data” , “acc exit — [._7:_: .]

data” (appear later) for (i=0; i<N; i++) {

X[1] = sssi 1% CP %

e “acc update” is still different { acc update]
from “acc data” P PR

)) Foc (it dol: Tx) I

e “acc data” may create/delete x[1] += ...; /* GPU */
copy on GPU } ¥

e "acc update” does not; it > acc parallel works like acc kernels

assumes the copy already

oresents By Akira Naruse, NVIDIA |

mm-acc/mm.c is Updated

related to [G2]

#pragma acc loop independent
for (j =0; j <n; j+t) {
#pragma acc loop seq
for (1 =0; | <k; I++) {
double blj = B[I+j*Idb];
#pragma acc loop independent
for (i =0; i <m i+t+) {

double ail = Ali+l*lda];

Clitjxldc] += ail*blj;
33

)

#pragma acc loop independent
for (j =0; j <n; j+t) {
#pragma acc loop seq
for (1 =0; | <k; I++) {
#pragma acc loop independent
for (i =0; i <m i+t+) {

double ail = A[i+I*lda];
double blj = B[I+j*Idb];

Clitjxldc] += ailxblj;
33

e The new version is around 3 times faster, please use this

version in [G2]

e and faster than mm-jil-acc

e Currently | cannot explain the reason ®

10

Data Transfer Costs in GPU T
Programming e
. CPU GPU
e In GPU programming,
data transfer costs A % ngpgégu

between CPU and GPU

have impacts on speed |
e Program speed may be :
slower than expected ® C %

E Copy X,y
CPU «GPU

Let’s discuss impacts of transfer in mm-acc

11

000
0000
. LY XX
Speed of GPU Programs: oc:
case of mm-acc °
In mm-acc, speed in Gflops is computed by CPU GPU
S =2mnk/ Ty

Tiota INCludes both computation time and Initi
transfer Transfer
- S counts slow-down by transfer A B, C
To see the effects, let’s try another sample T . — Compu-
/gs/hs1/tga-ppcomp/20/mm-meas-acc fotal tation
which outputs time for
ecopyin (transfer A, B, C) Transfer
ecomputation C
ecopyout (transfer C) v

In [G2], please evaluate effects of transfer costs 12

Another Description Way for

Data Copy

How can we measure transfer time?

e With “data” directive, copy timing is restricted

- We can copy data anytime by “acc enter data”, "acc

exit data” directives

// x,y are on CPU

#oragma acc data copy(x,y)

{
// x,y are on GPU

}

// x,y are on CPU

// x,y are on CPU

#pragma acc enter data copyin(x,y)

// x,y are on GPU

#pragma acc exit data copyout(x,y)

/] x,y are on CPU

13

Discussion on
Data Transfer Costs

e Time for data transfer T,.,.. = M /B + L
e M: Data size in bytes
o B: "Bandwidth” (speed)
o L:“Latency” (if M is sufficiently large, we can ignore it)

e InaP100 GPU,

e Theoretical computation speed is 5.3TFlops
e Theoretical bandwidth B is 16GB/s (2G double values per second)
- Transfer of values is much slower than computation ®

14

Discussion on Computation 3
and Transfer Costs T
In mm-acc,
cPU GPU

e Computation amount: O(mnk)

e Data transfer amount:
e A B, C:CPU-> GPU: O(mk+kn+mn)
e C:GPU > CPU: O(mn)

Initig@ation
Transfer

A B, C

Transfer costs are relatively smaller with Co
larger m, n, k

tation

Transfer
C

In diffusion-acc [G1], how can we
reduce transfer costs? 15

Function Calls from GPU

e Kernel region can call functions, but be careful

int main()

{

#pragma acc routine

#Horagma acc kernels

{
-+ func(Ali])

]

s 00
<

int func(int arg)
/{

— return ---;

e ‘“routine” directive is required by compiler to generate GPU code

16

How about Library Functions?

e Available library functions is very limited ®
e \We cannot use strlen(), memcpy(), fopen()... ®

e Exceptionally, some mathematical functions are ok ©

fabs, sqrt, fmax...
#include <math.h> is needed

e Very recently, printf() in kernel regions is ok! ©

17

Now explanation of OpenACC is finished; we will go to CUDA

18

OpenACC and CUDA for GPUs :

e OpenACC

o C/Fortran + directives (#pragma acc ...), Easier programming

e PGI compiler works
module load pgi
pgcc —acc ... XXX.c

o Basically for data parallel programs with for-loops
—> Only for limited types of algorithms ®

e CUDA

e Most popular and suitable for higher performance

o Use “nvcc” command for compile
module load cuda
nvce ... XXX.cu

Programming is harder, but more general

19

An OpenACC Program Look Like | ¢

int A[100], B[100];
int i,
#pragma acc data copy(A,B)
#pragma acc kernels
fipragma acc_loop_independent ___ Executed on GPU
v for (i =0; i <100; i++) { :‘/ in parallel
Ali]l += B[il; :

20

000
0000
i
A CUDA Program Look Like :
Sample:
int A[100], B[100]; /gs/hs1/tga -ppcomp/20/add-cuda/
int *DA, *DB; 0 remmmmmmmmmmmmmmmmmmmmmmmmmmme-
int i; __global__ void add

cudaMal loc(&DA, sizeof(int)*100); i (int DA, int *DB) i
cudaMal loc(&0B, sizeof(int)*100); '{ S
cudaMemcpy (DA, A,sizeof (int)*100, | int i = blockldx.x*blockDim.x!

cudaMemcpyHostToDevice) ; + threadldx.x;

cudaMemcpy (DB,B,sizeof (int)*100, DALi] +=DB[i];
cudaMemcpyHostToDevice); }

add<<<20, 5>>>(DA, DB);]

cudalemcpy (A, DA, s zeof (int)*100, Executed on GPU
cudaMemcpyDeviceToHost) ; (called a kernel function)

We have to separate code regions executed on CPU and GPU !

Using add-cuda Sample

module load cuda

cd ~/t3workspace

cp -r /gs/hs1/tga-ppcomp/20/add-cuda .
cd add-cuda

make

Jadd

> [Standard route] A log-in node does not have a GPU

- You can compile the sample there, but the program does
not work! 22

Compiling CUDA Programs/ | ¢:
Submitting GPU Jobs

e Compile .cu file using the NVIDIA CUDA toolkit

module load cuda
and then use nvcc

Also see Makefile in the sample directory

e Job submission method is same as OpenACC version

add-cuda/job.sh
#1/bin/sh

#$ -cwd

#$ -1 q_node=1 _
#$ -1 h_rt=00:10:00 [—> qgsub job.sh

Jadd

23

Preparing Data on Device
Memory

(1) Allocate a region on device memory
cf) cudaMalloc((void**)&DA, size);
(2) Copy data from host to device
cf) cudaMemcpy(DA, A, size, cudaMemcpyDefault);

Host memory Device memory

Note: cudaMalloc and cudaMemcpy must be called on CPU, NOT on GPU

24

Comparing OpenACC and

CUDA

OpenACC

Both allocation and copy are
done by acc data copyin

One variable name A may
represent both

« Aon host memory

* Aon device memory

int A[100];«— on CPU
#pragma acc data copy(A)

CUDA

cudaMalloc and cudaMemcpy
are separated

Programmer have to prepare
two pointers, such as A and DA

int A[100];

int *DA;

cudaMal loc(&A, --+);
cudaMemcpy (DA, A, =, -=);

// Here CPU cannot access DA[i]

func<<<:+-, --->>>(DA, --+); 25

Calling A GPU Kernel Function
from CPU

e A region executed by GPU must be a distinct function
o called a GPU kernel function

[CPU side] call [GPU side]
— / { .
of thread blocks :
of threads per block retu > return;
In this case, 20x5=100 }

threads run on GPU

A GPU kernel function (called from CPU)
eneeds global keyword

ecan take parameters

ecan NOT return value; return type must be void

26

Copying Back Data from GPU

A i DA

Host memory Device memory
e Copy data using cudaMemcpy
e cf) cudaMemcpy(A, DA, size, cudaMemcpyDefault);

e 4% argumentis one of
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice, cudaMemcpyHostToHost
cudaMemcpyDefault € Detect memory type automatically ©

e \When a memory area is unnecessary, free it
o cf) cudaFree(DA);

27

Assignments in GPU Part

(Abstract)

Choose one of [G1]—[G3], and submit a report
Due date: June 18 (Thursday)

(G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “mm-cuda” in
detall

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

28

Notes in Report Submission (1)

e Submit the followings via OCW-i

(1) A report document
PDF, MS-Word or text file

2 pages or more

in English or Japanese (H A&+ 0k)
(2) Source code files of your program
o Try “zip” to submit multiple files

29

Notes in Report Submission (2)

The report document should include:
e \Which problem you have chosen
e How you parallelized

It is even better if you mention efforts for high performance or
new functions

e Performance evaluation on TSUBAME
With varying problem sizes

Discussion with your findings
Other machines than TSUBAME are ok, if available

30

FYI: 3
Event Announcement

GPU online minicamp
eJune 15 (Mon) — 16 (Tue)
eOnline (Slack & Zoom)

eProfessional mentors, including NVIDIA technical
staffs, will help to solve issues on GPU
programming

eApplication deadline: June 8

31

http://gpu-computing.gsic.titech.ac.jp/node/102

Next Class:

e GPU Programming (3)
e Multi-threads on CUDA

32

	Practical Parallel Computing�(実践的並列コンピューティング)�
	Overview of This Course
	Data Region and Kernel Region in OpenACC
	“diffusion” Sample Program�related to [G1]
	Data Structure in “diffusion”
	Consideration of Parallelizing Diffusion with OpenACC�related to [G1]
	data Clause for Multi-Dimensional arrays
	Notes on Assignment [G1]
	Data Update inside Data Region
	mm-acc/mm.c is Updated�related to [G2]
	Data Transfer Costs in GPU Programming
	Speed of GPU Programs: �case of mm-acc
	Another Description Way for Data Copy
	Discussion on �Data Transfer Costs
	Discussion on Computation and Transfer Costs
	Function Calls from GPU
	How about Library Functions?
	スライド番号 18
	OpenACC and CUDA for GPUs
	An OpenACC Program Look Like
	A CUDA Program Look Like
	Using add-cuda Sample
	Compiling CUDA Programs/�Submitting GPU Jobs
	Preparing Data on Device Memory
	Comparing OpenACC and CUDA
	Calling A GPU Kernel Function from CPU
	Copying Back Data from GPU
	Assignments in GPU Part�(Abstract)
	Notes in Report Submission (1)
	Notes in Report Submission (2)
	FYI:�Event Announcement
	Next Class:

