
1

Practical Parallel Computing
(実践的並列コンピューティング)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Part2: GPU (2)
June 1, 2020

Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming

 4 classes
 Part 2: GPU programming

 4 classes We are here (2/4)
 OpenACC (1.5 classes) and CUDA (2.5 classes)

 Part 3: MPI for distributed memory programming
 3 classes

2

Data Region and Kernel
Region in OpenACC

 Data movement occurs at beginning and end of data region
 Data region may contain 1 or more kernel regions 3

int main()
{

A;
#pragma acc data copy(x,y)

{
#pragma acc kernels

{
B;

}
C;

#pragma acc kernels
D;

}
E;

}

A

B

C

D

E

CPU GPU
Copy x,y

CPU GPU

Copy x,y
CPU GPU

Data
Region

Kernel
regions

“diffusion” Sample Program
related to [G1]
An example of diffusion phenomena:

The ink spreads gradually, and finally the density
becomes uniform (Figure by Prof. T. Aoki)

Available at /gs/hs1/tga-ppcomp/20/diffusion/

• Execution：./diffusion [nt]
• nt: Number of time steps

5

Data Structure in “diffusion”
An Array for “even” steps An Array for “odd” steps

NX

NY

Consideration of Parallelizing
Diffusion with OpenACC
related to [G1]
 x, y loops can be parallelized

 We can use “#pragma acc loop” twice
 t loop cannot be parallelized

6

for (t = 0; t < nt; t++) {

for (y = 1; y < NY-1; y++) {

for (x = 1; x < NX-1; x++) {

:
}

}

}

Kernel region on GPU
Parallel x, y loops

It’s better to transfer
data out of t-loop

[Data transfer from CPU to GPU]

[Data transfer from GPU to CPU]

data Clause for Multi-
Dimensional arrays
float A[2000][1000];  an example of a 2-dimension array

…. data copy(A)
 OK, all elements of A are copied

…. data copy(A[0:2000][0:1000])
 OK, all elements of A are copied

…. data copy(A[500:600][0:1000])
 OK, rows[500,1100) are copied

…. data copy(A[0:2000][300:400])
 NG in current OpenACC

7

※ Currently, OpenACC does not support non-consecutive transfer

Notes on Assignment [G1]
 You will need compiler options different from the

diffusion directory for OpenACC
 You can use files in diffusion-acc directory as basis

 “Makefile” in this directory supports compiler options for
OpenACC

 Don’t forget “module load cuda pgi” before “make”

8

Data Update inside Data Region
 Data on GPU can be

updated with “acc update”
inside data region
 Also “acc update” can work

with “acc enter data” , “acc exit
data” (appear later)

 “acc update” is still different
from “acc data”
 “acc data” may create/delete

copy on GPU
 “acc update” does not; it

assumes the copy already
presents 9By Akira Naruse, NVIDIA

※ acc parallel works like acc kernels

mm-acc/mm.c is Updated
related to [G2]

 The new version is around 3 times faster, please use this
version in [G2]
 and faster than mm-jil-acc
 Currently I cannot explain the reason  10

#pragma acc loop independent

for (j = 0; j < n; j++) {

#pragma acc loop seq

for (l = 0; l < k; l++) {

#pragma acc loop independent

for (i = 0; i < m; i++) {

double ail = A[i+l*lda];

double blj = B[l+j*ldb];

C[i+j*ldc] += ail*blj;

}}}

#pragma acc loop independent

for (j = 0; j < n; j++) {

#pragma acc loop seq

for (l = 0; l < k; l++) {

double blj = B[l+j*ldb];

#pragma acc loop independent

for (i = 0; i < m; i++) {

double ail = A[i+l*lda];

C[i+j*ldc] += ail*blj;

}}}

Data Transfer Costs in GPU
Programming
 In GPU programming,

data transfer costs
between CPU and GPU
have impacts on speed
 Program speed may be

slower than expected 

11Let’s discuss impacts of transfer in mm-acc

A

B

C

D

E

CPU GPU
Copy x,y

CPU GPU

Copy x,y
CPU GPU

Speed of GPU Programs:
case of mm-acc

In mm-acc, speed in Gflops is computed by
S = 2mnk / Ttotal

Ttotal includes both computation time and
transfer
 S counts slow-down by transfer

To see the effects, let’s try another sample
/gs/hs1/tga-ppcomp/20/mm-meas-acc
which outputs time for
copyin (transfer A, B, C)
computation
copyout (transfer C)

12

CPU GPU

Compu-
tation

Transfer
A, B, C

Transfer
C

Initialization

Ttotal Tcomp

In [G2], please evaluate effects of transfer costs

Another Description Way for
Data Copy

 With “data” directive, copy timing is restricted

13

// x,y are on CPU

#pragma acc data copy(x,y)
{

// x,y are on GPU
}

// x,y are on CPU

// x,y are on CPU

#pragma acc enter data copyin(x,y)

// x,y are on GPU

#pragma acc exit data copyout(x,y)
// x,y are on CPU

We can copy data anytime by “acc enter data”, ”acc
exit data” directives

How can we measure transfer time?

Discussion on
Data Transfer Costs

 Time for data transfer Ttrans ≒ M / B + L
 M: Data size in bytes
 B: “Bandwidth” (speed)
 L: “Latency” (if M is sufficiently large, we can ignore it)

 In a P100 GPU,
 Theoretical computation speed is 5.3TFlops
 Theoretical bandwidth B is 16GB/s (2G double values per second)
 Transfer of values is much slower than computation 

14

Discussion on Computation
and Transfer Costs

In mm-acc,
 Computation amount: O(mnk)
 Data transfer amount:

 A, B, C: CPU  GPU: O(mk+kn+mn)
 C: GPU  CPU: O(mn)

Transfer costs are relatively smaller with
larger m, n, k

15

CPU GPU

Computation

Transfer
A, B, C

Transfer
C

Initialization

In diffusion-acc [G1], how can we
reduce transfer costs?

Function Calls from GPU
 Kernel region can call functions, but be careful

16

int main()
{

#pragma acc kernels
{

… func(A[i]) …

}

}

#pragma acc routine
int func(int arg)
{

:
:
return …;

}

 “routine” directive is required by compiler to generate GPU code

How about Library Functions?
 Available library functions is very limited 
 We cannot use strlen(), memcpy(), fopen()… 

 Exceptionally, some mathematical functions are ok 
 fabs, sqrt, fmax…
 #include <math.h> is needed

 Very recently, printf() in kernel regions is ok! 

17

18

Now explanation of OpenACC is finished; we will go to CUDA

OpenACC and CUDA for GPUs
 OpenACC

 C/Fortran + directives (#pragma acc …), Easier programming
 PGI compiler works

 module load pgi
 pgcc –acc … XXX.c

 Basically for data parallel programs with for-loops
 Only for limited types of algorithms 

 CUDA
 Most popular and suitable for higher performance
 Use “nvcc” command for compile

 module load cuda
 nvcc … XXX.cu

Programming is harder, but more general
19

An OpenACC Program Look Like

20

int A[100], B[100];
int i;

#pragma acc data copy(A,B)
#pragma acc kernels
#pragma acc loop independent

for (i = 0; i < 100; i++) {
A[i] += B[i];

}

// After kernel region finishes,
CPU can access to A[i],B[i]

Executed on GPU
in parallel

A CUDA Program Look Like

21

int A[100], B[100];
int *DA, *DB;
int i;
cudaMalloc(&DA, sizeof(int)*100);
cudaMalloc(&DB, sizeof(int)*100);
cudaMemcpy(DA,A,sizeof(int)*100,

cudaMemcpyHostToDevice);
cudaMemcpy(DB,B,sizeof(int)*100,

cudaMemcpyHostToDevice);

add<<<20, 5>>>(DA, DB);

cudaMemcpy(A,DA,sizeof(int)*100,
cudaMemcpyDeviceToHost);

__global__ void add
(int *DA, int *DB)

{
int i = blockIdx.x*blockDim.x

+ threadIdx.x;
DA[i] += DB[i];

}

Executed on GPU
(called a kernel function)

Sample:
/gs/hs1/tga-ppcomp/20/add-cuda/

We have to separate code regions executed on CPU and GPU

Using add-cuda Sample

※ [Standard route] A log-in node does not have a GPU
 You can compile the sample there, but the program does
not work! 22

[make sure that you are at a interactive node (r7i7nX)]
module load cuda [Do once after login]
cd ~/t3workspace [Example in web-only route]
cp -r /gs/hs1/tga-ppcomp/20/add-cuda .
cd add-cuda
make
[An executable file “add” is created]
./add

23

Compiling CUDA Programs/
Submitting GPU Jobs
 Compile .cu file using the NVIDIA CUDA toolkit

 module load cuda
 and then use nvcc

Also see Makefile in the sample directory

 Job submission method is same as OpenACC version

#!/bin/sh
#$ -cwd
#$ -l q_node=1
#$ -l h_rt=00:10:00

./add

add-cuda/job.sh

qsub job.sh

Preparing Data on Device
Memory
(1) Allocate a region on device memory
cf) cudaMalloc((void**)&DA, size);

(2) Copy data from host to device
cf) cudaMemcpy(DA, A, size, cudaMemcpyDefault);

24

CPU GPU

A (1) DA
Host memory Device memory

(2)

Note: cudaMalloc and cudaMemcpy must be called on CPU, NOT on GPU

Comparing OpenACC and
CUDA

25

OpenACC CUDA
Both allocation and copy are
done by acc data copyin

cudaMalloc and cudaMemcpy
are separated

One variable name A may
represent both
• A on host memory
• A on device memory

Programmer have to prepare
two pointers, such as A and DA

int A[100];
#pragma acc data copy(A)
#pragma acc kernels
{
… A[i] …

} on GPU

on CPU int A[100];
int *DA;
cudaMalloc(&DA, …);
cudaMemcpy(DA, A, …, …);
// Here CPU cannot access DA[i]

func<<<…, …>>>(DA, …);

Calling A GPU Kernel Function
from CPU
 A region executed by GPU must be a distinct function

 called a GPU kernel function

26

[CPU side]

func<<<20, 5>>>(…); __global__ void func(…)
{

:
return;

}

[GPU side]call

return

A GPU kernel function (called from CPU)
needs __global__ keyword
can take parameters
can NOT return value; return type must be void

of thread blocks
of threads per block
In this case, 20x5=100
threads run on GPU

Copying Back Data from GPU

 Copy data using cudaMemcpy
 cf) cudaMemcpy(A, DA, size, cudaMemcpyDefault);
 4th argument is one of

 cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost
 cudaMemcpyDeviceToDevice, cudaMemcpyHostToHost
 cudaMemcpyDefault  Detect memory type automatically 

 When a memory area is unnecessary, free it
 cf) cudaFree(DA);

27

A DA
Host memory Device memory

28

Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 18 (Thursday)

[G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “mm-cuda” in
detail

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

29

Notes in Report Submission (1)

 Submit the followings via OCW-i
(1) A report document

 PDF, MS-Word or text file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 Try “zip” to submit multiple files

30

Notes in Report Submission (2)

The report document should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or
new functions

 Performance evaluation on TSUBAME
 With varying number of threads
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

FYI:
Event Announcement
GPU online minicamp
June 15 (Mon) – 16 (Tue)
Online (Slack & Zoom)
Professional mentors, including NVIDIA technical
staffs, will help to solve issues on GPU
programming

http://gpu-computing.gsic.titech.ac.jp/node/102
Application deadline: June 8

31

http://gpu-computing.gsic.titech.ac.jp/node/102

32

Next Class:
 GPU Programming (3)
 Multi-threads on CUDA

	Practical Parallel Computing�(実践的並列コンピューティング)�
	Overview of This Course
	Data Region and Kernel Region in OpenACC
	“diffusion” Sample Program�related to [G1]
	Data Structure in “diffusion”
	Consideration of Parallelizing Diffusion with OpenACC�related to [G1]
	data Clause for Multi-Dimensional arrays
	Notes on Assignment [G1]
	Data Update inside Data Region
	mm-acc/mm.c is Updated�related to [G2]
	Data Transfer Costs in GPU Programming
	Speed of GPU Programs: �case of mm-acc
	Another Description Way for Data Copy
	Discussion on �Data Transfer Costs
	Discussion on Computation and Transfer Costs
	Function Calls from GPU
	How about Library Functions?
	スライド番号 18
	OpenACC and CUDA for GPUs
	An OpenACC Program Look Like
	A CUDA Program Look Like
	Using add-cuda Sample
	Compiling CUDA Programs/�Submitting GPU Jobs
	Preparing Data on Device Memory
	Comparing OpenACC and CUDA
	Calling A GPU Kernel Function from CPU
	Copying Back Data from GPU
	Assignments in GPU Part�(Abstract)
	Notes in Report Submission (1)
	Notes in Report Submission (2)
	FYI:�Event Announcement
	Next Class:

