
1

Practical Parallel Computing
(実践的並列コンピューティング)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Part2: GPU (1)
May 28, 2020

Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming

 4 classes
 Part 2: GPU programming

 4 classes We are here (1/4)
 OpenACC (1.5 classes) and CUDA (2.5 classes)

 Part 3: MPI for distributed memory programming
 3 classes

2

Parallel Programming Methods
on TSUBAME

3

Node

Memory

GPU GPU GPU GPU

CPU CPU

Node

Memory

GPU GPU GPU GPU

CPU CPU

Node

Memory

GPU GPU GPU GPU

CPU CPU

MPI
OpenMP Sequential

OpenACC/CUDA

2010/12/06

GPU Computing
 Graphic processing units (GPU) have been originally used for computing

graphics (including video games)
 A high performance GPU has many cores

 CPU: 2 to 32 cores. GPU: >1000 cores
 The concept is called GPGPU (General-Purpose computing on GPU)

 GPGPU became popular since NVIDIA invented CUDA language in 2007
 Recently it is popular for deep learning

TSUBAME3
node

A Compute Node with GPU

 A GPU has its distinct memory (device memory)
 CPU memory is called host memory

 Many cores in a GPU share its device memory
5

CPU

Host memory

GPU

Device memory Device memory

GPU

Characteristics of GPUs

Comparing Xeon E5-2680 v4 (TSUBAME3’s CPU) and
Tesla P100 (TSUBAME3’s GPU)

1 CPU 1 GPU
Number of cores 14 cores

(28 cores with 2CPUs)
3584 CUDA cores
(=64 x 56SMXs)

Clock Frequency 2.4GHz 1.48GHz

Peak Computation
Speed (double precision)

425GFlops 5300GFlops

Memory Capacity 128GB
(256GB shared by 2CPUs)

16GB

<<<

<<
>

>>

A GPU is a board or a card attached to computers
 It cannot work alone. Driven by CPUs
 Different programming methods

Programming Environments
for NVIDIA GPUs
 CUDA We will use after OpenACC

 The most popular environment, designed by NVIDIA
 C/Fortran + new syntaxes
 Use “nvcc” command for compile

 module load cuda
 nvcc … XXX.cu

 For more general programs than OpenACC
 OpenACC  Today’s topic

 C/Fortran + directives (#pragma acc …), Easier programming 
 I recommend PGI compiler

 module load pgi
 pgcc –acc … XXX.c

 For parallel programs with for-loops 
 OpenMP 4.5, OpenCL… 7

An OpenACC Program Looks Like

8

int a[100], b[100], c[100];
int i;

#pragma acc data copy(a,b,c)
#pragma acc kernels
#pragma acc loop independent

for (i = 0; i < 100; i++) {
a[i] = b[i]+c[i];

}

Examples of OpenACC
directives

In this case, each directive has
an effect on the following
block/sentence

C/C++/Fortran + directives

OpenACC is not so popular as OpenMP, unfortunately
• gcc 4.8.5 (TSUBAME’s default) does not support it
• We will use PGI compiler

9

OpenACC Version of “mm”
sample

A: a (m×k) matrix, B: a (k×n) matrix
C: a (m×n) matrix

C ← A × B
 Algorithm with a triply-nested for-

loop
 Supports variable matrix size.

 Each matrix is expressed as a 1D
array by column-major format

 Execution: ./mm [m] [n] [k]

CA

B

m

k

k

n

Available at /gs/hs1/tga-ppcomp/20/mm-acc/

Using mm-acc Sample

※ [Standard route] A log-in node does not have a GPU
 You can compile the sample there, but when executed,
GPU is not used (Slow!) 10

[make sure that you are at a interactive node (r7i7nX)]
module load cuda pgi [Do once after login]
cd ~/t3workspace [Example in web-only route]
cp -r /gs/hs1/tga-ppcomp/20/mm-acc .
cd mm-acc
make
[You will see some messages, and an executable file
“mm” is created]
./mm 1000 1000 1000

11

Notes on Compiling OpenACC
Programs
 PGI compiler on TSUBAME3.0

 module load cuda pgi, and then use pgcc
 Use -acc option in compiling and linking
 -Minfo=accel option outputs many information on parallelization

 Also very new gcc (gcc 6 or later) supports OpenACC

Example of output
:

47, Generating copyin(A[:m*k])
Generating copy(C[:m*n])
Generating copyin(B[:k*n])

50, Loop is parallelizable
:

12

Kernel Region in OpenACC

int main()
{

A;
#pragma acc kernels

{
B;

}
C;

#pragma acc kernels
D;
E;

}

A sentence/block immediately after #pragma acc kernels
is called a kernel region, executed on GPU
 We don’t need to specify number of threads (we also can)
 Also #pragma acc parallel works similarly (not same)

A

B

C

D

E

Kernel
region
on GPU

CPU GPU

Data Movement between CPU
and GPU
 We need to move data between CPU and GPU

 Host (CPU) memory and Device (GPU) memory are distinct, like
distributed memory

 Threads on a GPU share the device memory

13

Host memory

CPU GPU

Device memory

PCI Express
link (16GB/s)

For this purpose, we use #pragma acc data directive
 This defines a data region

Data Directives to use GPU
memory

 Data region may contain 1 or more kernel regions
 Data movement occurs at beginning and end of data region 14

int main()
{

A;
#pragma acc data copy(x,y)

{
#pragma acc kernels

{
B;

}
C;

#pragma acc kernels
D;

}
E;

}

A

B

C

D

E

CPU GPU
Copy x,y

CPU GPU

Copy x,y
CPU GPU

Data
Region

Kernel
regions

Data Directive (1)
 Arrays (like a):

 we can write array names if the
sizes are statically declared 
entire array is copied

 Pointers as arrays (like b):
cf) b [0 : 20]

 Partial copying like b[10:5] or
a[4:4] work

 Scalar variables (like x):
 You can omit copy(x)  The compiler

detects

15

int x;
float a[10];
double *b = (double*)

malloc(20*sizeof(double));
:

#pragma acc data copy(x, a, b[0:20])
:start index number of elements

#pragma acc data copy(a[0:10], b[0:20])

Same meaning

Data Directive (2)
 Directions of copying

 … data copyin(…): Copy CPUGPU at the begininng
 … data copyout(…): Copy GPUCPU at the end
 … data copy(…): Do both
Optimization of data movement will help speedup

16

Loop Directive
 #pragma acc loop must be

included in “acc kernels” or
“acc parallel”

 Directly followed by “for”
loop
 The loop must have a loop

counter, as in OpenMP
 List/tree traversal is NG

17

int a[100], b[100], c[100];
int i;

#pragma acc data copy(a,b,c)
#pragma acc kernels
#pragma acc loop independent

for (i = 0; i < 100; i++) {
a[i] = b[i]+c[i];

}

• … loop independent: Iterations are done in parallel by multiple
GPU threads

• … loop seq: Done sequentially. Not be parallelized
• … loop: Compiler decides

OpenACC Version of mm
(mm-acc/mm.c)

 Each element in C can be computed in parallel (i-loop, j-loop)
 Computation of a single C element is sequential (l-loop)

18

#pragma acc data copyin(A[0:m*k],B[0:k*n]),copy(C[0:m*n])
#pragma acc kernels
#pragma acc loop independent
for (j = 0; j < n; j++) {

#pragma acc loop seq
for (l = 0; l < k; l++) {

#pragma acc loop independent
for (i = 0; i < m; i++) {
Ci,j += Ai,l * Bl,j;

} } }

←For each column in C

←For each row in C

←For dot product

We can omit GPUCPU copy of A,B

Different Loop Orders
 mm-acc uses JLI nested loop
 mm-jil-acc uses JIL nested loop
 Both have the same amount of computations. How are speeds?

There are P3=6 variations of triply nested loop
 IJL, ILJ, JIL, JLI, LIJ, LJI
 Which is the fastest? And how about on CPUs?

19

#!/bin/sh
#$ -cwd
#$ -l s_core=1
#$ -l h_rt=00:10:00

./mm 1000 1000 1000

Submitting a GPU Job
 OpenACC version

 see mm-acc directory
 To use a GPU, use q_node type
 (h_node or f_node types for multi-GPU)

20

#!/bin/sh
#$ -cwd
#$ -l q_node=1
#$ -l h_rt=00:10:00

./mm 1000 1000 1000

mm-acc/job.sh

 Job submission
 qsub job.sh

resource type
and count

maximum
run time

 Sequential version
 see mm directory

mm/job.sh

21

1

x

y

dx

Estimate approximation of π (circumference/diameter) by
approximation of integration

 Available at /gs/hs1/tga-ppcomp/20/pi-acc/
 Method

 Let SUM be approximation of the yellow area
 4 x SUM  π

 Execution：./pi [n]
 n: Number of division
 Cf) ./pi 100000000

 Compute complexity： O(n)

OpenACC version of “pi”
sample

dx = 1/n
y = sqrt(1-x*x)

Algorithm of “pi”

22

double pi(int n) {
int i;
double sum = 0.0;
double dx = 1.0 / (double)n;

#pragma omp parallel
#pragma omp for reduction(+:sum)

for (i = 0; i < n; i++) {
double x = (double)i * dx;
double y = sqrt(1.0 - x*x);
sum += dx*y;

}

return 4.0*sum; }

OpenMP
double pi(int n) {

int i;
double sum = 0.0;
double dx = 1.0 / (double)n;

#pragma acc kernels
#pragma acc loop independent reduction(+:sum)

for (i = 0; i < n; i++) {
double x = (double)i * dx;
double y = sqrt(1.0 - x*x);
sum += dx*y;

}

return 4.0*sum; }

OpenACC

※ For scalar variables, “data copy”
is omitted

Notes on Number of Threads
 In OpenMP, the number of threads is set by

OMP_NUM_THREADS
 In OpenACC, the number is automatically determined

per loop

 In OpenMP, thread ID is obtained by
omp_get_thread_num()

 In OpenACC, we cannot see thread ID

23

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

24

Part 1
OpenMP

Part 3
MPI

Part 2
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1] diffusion
[M2] mm
[M3] free

[G1] diffusion
[G2] mm
[G3] free

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

25

Assignments in GPU Part (1)
Choose one of [G1]—[G3], and submit a report
Due date: June 18 (Thursday)

[G1] Parallelize “diffusion” sample program by OpenACC
or CUDA

 You can use Makefile in /gs/hs1/tga-ppcomp/20/diffusion-acc/
or /gs/hs1/tga-ppcomp/20/diffusion-cuda/

Optional：
 To make array sizes variable parameters
 To compare OpenACC vs CUDA
 To improve performance further
 Different assignment of threads and elements (CUDA), etc

26

Assignments in GPU Part(2)
[G2] Evaluate speed of “mm-acc” or “mm-cuda” in

detail
 Use various matrices sizes
 Evaluate effects of data transfer cost
 Compare with CPU (OpenMP) version
Optional：
 To use different loop orders
 To evaluate both mm-acc and mm-cuda
 To change/improve the program
 Different assignment of threads and elements (CUDA) etc

27

Assignments in GPU Part (3)
[G3] (Freestyle) Parallelize any program by OpenACC

or CUDA.

 cf) A problem related to your research
 “sort” sample on GPU?
 Other algorithms than quick sort may be appropriate

 More challenging one for parallelization is better
 cf) Partial computations have dependency with each other

28

Notes in Report Submission (1)

 Submit the followings via OCW-i
(1) A report document

 PDF, MS-Word or text file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 Try “zip” to submit multiple files

29

Notes in Report Submission (2)

The report document should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or
new functions

 Performance evaluation on TSUBAME
 With varying number of threads
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

30

Next Class:
 GPU Programming (2)
 Improving data copy
 Improving loop parallelization

	Practical Parallel Computing�(実践的並列コンピューティング)�
	Overview of This Course
	Parallel Programming Methods�on TSUBAME
	GPU Computing
	A Compute Node with GPU
	Characteristics of GPUs
	Programming Environments for NVIDIA GPUs
	An OpenACC Program Looks Like
	OpenACC Version of “mm” sample
	Using mm-acc Sample
	Notes on Compiling OpenACC Programs
	Kernel Region in OpenACC
	Data Movement between CPU and GPU
	Data Directives to use GPU memory
	Data Directive (1)
	Data Directive (2)
	Loop Directive
	OpenACC Version of mm�(mm-acc/mm.c)
	Different Loop Orders
	Submitting a GPU Job
	OpenACC version of “pi” sample
	Algorithm of “pi”
	Notes on Number of Threads
	Assignments in this Course
	Assignments in GPU Part (1)
	Assignments in GPU Part(2)
	Assignments in GPU Part (3)
	Notes in Report Submission (1)
	Notes in Report Submission (2)
	Next Class:

