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Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming 

 4 classes
 Part 2: GPU programming

 4 classes We are here (1/4)
 OpenACC (1.5 classes) and CUDA (2.5 classes)

 Part 3: MPI for distributed memory programming
 3 classes
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Parallel Programming Methods
on TSUBAME
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GPU Computing
 Graphic processing units (GPU) have been originally used for computing 

graphics (including video games)
 A high performance GPU has many cores

 CPU: 2 to 32 cores. GPU: >1000 cores
 The concept is called GPGPU (General-Purpose computing on GPU)

 GPGPU became popular since NVIDIA invented CUDA language in 2007
 Recently it is popular for deep learning

TSUBAME3
node



A Compute Node with GPU

 A GPU has its distinct memory (device memory)
 CPU memory is called host memory

 Many cores in a GPU share its device memory
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Characteristics of GPUs

Comparing Xeon E5-2680 v4 (TSUBAME3’s CPU) and
Tesla P100 (TSUBAME3’s GPU)

1 CPU 1 GPU
Number of cores 14 cores

(28 cores with 2CPUs)
3584 CUDA cores
(=64 x 56SMXs)

Clock Frequency 2.4GHz 1.48GHz

Peak Computation 
Speed (double precision)

425GFlops 5300GFlops

Memory Capacity 128GB
(256GB shared by 2CPUs)

16GB

<<<

<<
>

>>

A GPU is a board or a card attached to computers
 It cannot work alone. Driven by CPUs
 Different programming methods



Programming Environments 
for NVIDIA GPUs
 CUDA We will use after OpenACC

 The most popular environment, designed by NVIDIA
 C/Fortran + new syntaxes
 Use “nvcc” command for compile

 module load cuda
 nvcc … XXX.cu

 For more general programs than OpenACC
 OpenACC   Today’s topic

 C/Fortran + directives (#pragma acc …), Easier programming 
 I recommend PGI compiler

 module load pgi
 pgcc –acc … XXX.c

 For parallel programs with for-loops 
 OpenMP 4.5, OpenCL… 7



An OpenACC Program Looks Like
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int a[100], b[100], c[100];
int i;

#pragma acc data copy(a,b,c)
#pragma acc kernels
#pragma acc loop independent

for (i = 0; i < 100; i++) {
a[i] = b[i]+c[i];

}

Examples of OpenACC
directives

In this case, each directive has 
an effect on the following
block/sentence

C/C++/Fortran + directives

OpenACC is not so popular as OpenMP, unfortunately
• gcc 4.8.5 (TSUBAME’s default) does not support it
• We will use PGI compiler
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OpenACC Version of “mm” 
sample

A: a (m×k) matrix, B: a (k×n) matrix
C: a (m×n) matrix

C ← A × B
 Algorithm with a triply-nested for-

loop
 Supports variable matrix size. 

 Each matrix is expressed as a 1D 
array by column-major format

 Execution: ./mm [m] [n] [k]

CA

B

m

k

k

n

Available at /gs/hs1/tga-ppcomp/20/mm-acc/



Using mm-acc Sample

※ [Standard route] A log-in node does not have a GPU
 You can compile the sample there, but when executed, 
GPU is not used (Slow!) 10

[make sure that you are at a interactive node (r7i7nX) ]
module load cuda pgi [Do once after login]
cd ~/t3workspace    [Example in web-only route]
cp -r /gs/hs1/tga-ppcomp/20/mm-acc .
cd mm-acc
make
[You will see some messages, and an executable file 
“mm” is created]
./mm 1000 1000 1000
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Notes on Compiling OpenACC 
Programs
 PGI compiler on TSUBAME3.0

 module load cuda pgi, and then use pgcc
 Use -acc option in compiling and linking
 -Minfo=accel option outputs many information on parallelization

 Also very new gcc (gcc 6 or later) supports OpenACC

Example of output
: 

47, Generating copyin(A[:m*k])
Generating copy(C[:m*n])
Generating copyin(B[:k*n])

50, Loop is parallelizable
:
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Kernel Region in OpenACC

int main()
{

A;
#pragma acc kernels

{
B;

}
C;

#pragma acc kernels
D;
E;

}

A sentence/block immediately after #pragma acc kernels 
is called a kernel region, executed on GPU
 We don’t need to specify number of threads (we also can)
 Also #pragma acc parallel works similarly (not same)

A

B

C

D

E

Kernel
region
on GPU

CPU GPU



Data Movement between CPU 
and GPU
 We need to move data between CPU and GPU

 Host (CPU) memory and Device (GPU) memory are distinct, like 
distributed memory

 Threads on a GPU share the device memory
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Host memory

CPU GPU

Device memory

PCI Express
link (16GB/s)

For this purpose, we use #pragma acc data directive
 This defines a data region



Data Directives to use GPU 
memory

 Data region may contain 1 or more kernel regions
 Data movement occurs at beginning and end of data region 14

int main()
{

A;
#pragma acc data copy(x,y)

{
#pragma acc kernels

{
B;

}
C;

#pragma acc kernels
D;

}
E;

}

A

B

C

D

E

CPU GPU
Copy x,y

CPU GPU

Copy x,y
CPU GPU

Data
Region

Kernel
regions



Data Directive (1)
 Arrays (like a):

 we can write array names if the 
sizes are statically declared 
entire array is copied

 Pointers as arrays (like b):
cf)  b [ 0 : 20 ]

 Partial copying like b[10:5] or 
a[4:4] work

 Scalar variables (like x):
 You can omit copy(x)  The compiler 

detects
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int x;
float a[10];
double *b = (double*)

malloc(20*sizeof(double));
:

#pragma acc data copy(x, a, b[0:20])
:start index number of elements

#pragma acc data copy(a[0:10], b[0:20])

Same meaning



Data Directive (2)
 Directions of copying

 … data copyin(…): Copy CPUGPU at the begininng
 … data copyout(…): Copy GPUCPU at the end
 … data copy(…): Do both
Optimization of data movement will help speedup

16



Loop Directive
 #pragma acc loop must be 

included in “acc kernels” or 
“acc parallel”

 Directly followed by “for” 
loop
 The loop must have a loop 

counter, as in OpenMP
 List/tree traversal is NG
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int a[100], b[100], c[100];
int i;

#pragma acc data copy(a,b,c)
#pragma acc kernels
#pragma acc loop independent

for (i = 0; i < 100; i++) {
a[i] = b[i]+c[i];

}

• … loop independent: Iterations are done in parallel by multiple 
GPU threads

• … loop seq: Done sequentially. Not be parallelized
• … loop: Compiler decides



OpenACC Version of mm
(mm-acc/mm.c)

 Each element in C can be computed in parallel (i-loop, j-loop)
 Computation of a single C element is sequential (l-loop)
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#pragma acc data copyin(A[0:m*k],B[0:k*n]),copy(C[0:m*n])
#pragma acc kernels
#pragma acc loop independent
for (j = 0; j < n; j++) {

#pragma acc loop seq
for (l = 0; l < k; l++) {

#pragma acc loop independent
for (i = 0; i < m; i++) {
Ci,j += Ai,l * Bl,j;

} } }

←For each column in C

←For each row in C

←For dot product

We can omit GPUCPU copy of A,B



Different Loop Orders
 mm-acc uses JLI nested loop
 mm-jil-acc uses JIL nested loop
 Both have the same amount of computations. How are speeds?

There are P3=6 variations of triply nested loop
 IJL, ILJ, JIL, JLI, LIJ, LJI
 Which is the fastest? And how about on CPUs?
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#!/bin/sh
#$ -cwd
#$ -l s_core=1
#$ -l h_rt=00:10:00

./mm 1000 1000 1000

Submitting a GPU Job
 OpenACC version 

 see mm-acc directory
 To use a GPU, use q_node type
 (h_node or f_node types for multi-GPU)
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#!/bin/sh
#$ -cwd
#$ -l q_node=1
#$ -l h_rt=00:10:00

./mm 1000 1000 1000

mm-acc/job.sh

 Job submission
 qsub job.sh

resource type
and count

maximum 
run time

 Sequential version
 see mm directory

mm/job.sh
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1

x

y

dx

Estimate approximation of π (circumference/diameter) by 
approximation of integration

 Available at /gs/hs1/tga-ppcomp/20/pi-acc/
 Method

 Let SUM be approximation of the yellow area
 4 x SUM  π

 Execution：./pi [n]
 n: Number of division
 Cf) ./pi 100000000

 Compute complexity： O(n)

OpenACC version of “pi” 
sample

dx = 1/n
y = sqrt(1-x*x)



Algorithm of “pi”
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double pi(int n) {
int i;
double sum = 0.0;
double dx = 1.0 / (double)n;

#pragma omp parallel
#pragma omp for reduction(+:sum)

for (i = 0; i < n; i++) {
double x = (double)i * dx;
double y = sqrt(1.0 - x*x);
sum += dx*y;

}

return 4.0*sum; }

OpenMP
double pi(int n) {

int i;
double sum = 0.0;
double dx = 1.0 / (double)n;

#pragma acc kernels
#pragma acc loop independent reduction(+:sum)

for (i = 0; i < n; i++) {
double x = (double)i * dx;
double y = sqrt(1.0 - x*x);
sum += dx*y;

}

return 4.0*sum; }

OpenACC

※ For scalar variables, “data copy”
is omitted



Notes on Number of Threads
 In OpenMP, the number of threads is set by 

OMP_NUM_THREADS
 In OpenACC, the number is automatically determined 

per loop

 In OpenMP, thread ID is obtained by 
omp_get_thread_num()

 In OpenACC, we cannot see thread ID
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Assignments in this Course
 There is homework for each part. Submissions of reports 
for 2 parts are required
 Also attendances will be considered
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Part 1
OpenMP

Part 3
MPI

Part 2
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1] diffusion 
[M2] mm
[M3] free

[G1] diffusion 
[G2] mm
[G3] free

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem
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Assignments in GPU Part (1)
Choose one of [G1]—[G3], and submit a report
Due date: June 18 (Thursday)

[G1] Parallelize “diffusion” sample program by OpenACC
or CUDA

 You can use Makefile in /gs/hs1/tga-ppcomp/20/diffusion-acc/
or /gs/hs1/tga-ppcomp/20/diffusion-cuda/ 

Optional：
 To make array sizes variable parameters
 To compare OpenACC vs CUDA
 To improve performance further
 Different assignment of threads and elements (CUDA), etc



26

Assignments in GPU Part(2)
[G2] Evaluate speed of “mm-acc” or “mm-cuda” in 

detail
 Use various matrices sizes
 Evaluate effects of data transfer cost
 Compare with CPU (OpenMP) version
Optional：
 To use different loop orders
 To evaluate both mm-acc and mm-cuda
 To change/improve the program
 Different assignment of threads and elements (CUDA) etc
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Assignments in GPU Part (3)
[G3] (Freestyle) Parallelize any program by OpenACC

or CUDA.

 cf) A problem related to your research
 “sort” sample on GPU?
 Other algorithms than quick sort may be appropriate

 More challenging one for parallelization is better
 cf) Partial computations have dependency with each other
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Notes in Report Submission (1)

 Submit the followings via OCW-i
(1) A report document

 PDF, MS-Word or text file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 Try “zip” to submit multiple files



29

Notes in Report Submission (2)

The report document should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or 
new functions

 Performance evaluation on TSUBAME
 With varying number of threads 
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available
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Next Class:
 GPU Programming (2)
 Improving data copy
 Improving loop parallelization
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