
1

Practical Parallel Computing
(実践的並列コンピューティング)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Part1: OpenMP (３)
May 18, 2020

Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming

 4 classes We are here (3/4)
 Part 2: GPU programming

 OpenACC and CUDA
 4 classes

 Part 3: MPI for distributed memory programming
 3 classes

2

Today’s Topic：Task Parallelism
~Comparison with Data Parallelism~
 Data Parallelism：

 Every thread does uniform/similar tasks for different part of large data

 Task Parallelism：
 Each thread does different tasks

 Sometimes the number of tasks is unknown beforehand
 Sometimes tasks are generated recursively

3

cf) mm, diffusion
samples

cf) fib, sort
samples today

Data Parallelism/Task Parallelism
in OpenMP
 #pragma omp for

 Used for data parallelism (basically)
 Number of tasks is known before starting for-loop

 for (i = 0; i < n; i++) …  n tasks are divided among threads
 #pragma omp task

 Used for task parallelism (basically)
 Number of tasks may change during execution

※ You may write data parallel algorithm with “omp task” if you want, or
vice versa

4

Relationship of OpenMP
Syntaxes

※ This grouping is different from that in OpenMP official web
(openmp.org/specifications/)

5

Thread management
#pragma omp parallel, #pragma omp single,

#pragma omp barrier, #pragma omp critical …
omp_get_num_threads(), omp_get_thread_num() …

Loop parallelization
#pragma omp for

Task management
#pragma omp task

#pragma omp taskwait

Data parallel
algorithms

mm, diffusion, pi samples

Task parallel
algorithms

fib, sort samples

Any parallel
algorithms

task/taskwait Syntaxes

#pragma omp parallel
#pragma omp single
{
#pragma omp task
{

A;
}

#pragma omp task
B;

C;
#pragma omp taskwait
}

6

“task” syntax generates a task
that executes the following
block/sentence
 A task is executed by one of threads

who is idle (has nothing to do)

 New tasks and the original task may
be executed in parallel

 Recursive task generation is ok
 A parent task generates children tasks, and

one of generates grandchildren…

“taskwait” syntax waits end of all
children tasks

See a sample at at /gs/hs1/tga-ppcomp/20/tasks-omp/

Differences between
“Tasks” and “Threads”

 So, what is the difference?
 Number of threads is (basically) constant during a parallel region

 OMP_NUM_THREADS, usually no more than number of processor cores
 Number of tasks may be changed frequently

 may be >>number of processor cores
 When a thread becomes idle, it takes one of tasks and executes it

7
Threads

Tasks

Task A and task B are
executed in parallel

Thread A and thread B
are executed in parallel

Note on Using “task” Syntax
 In OpenMP, tasks are taken and executed by idle threads
We need to prepare idle threads before creating tasks

8

#pragma omp parallel
#pragma omp single
{

: (task generations)

}

←Multiple threads start
←Only a single thread executes followings

(other threads become idle)

[Q] What if we omit only “omp single”?
 Every thread execute all tasks redundantly
 No speed up! 

←Parallel region finishes
[Q] What if we omit “omp parallel” & “omp single”?
 There is 1 thread, which executes all tasks
 No speed up! 

Threads Executes Tasks
(see “tasks-omp” sample)

9

#pragma omp parallel
#pragma omp single
{
#pragma omp task
{

A;
}

#pragma omp task
B;

C;
#pragma omp taskwait
} (end of parallel region)

Exec
A

Exec
BExec

C

Number of Tasks
 In the tasks-omp sample, there are 3 tasks in the world
 No speed up with ≧ 4 threads
“Too less tasks are bad ”

 To use threads (CPU cores) effectively, the number of
tasks should be ≧ OMP_NUM_THREADS
Next, we try a sample program with recursive function calls to
generate plenty of tasks

10

“fib” Sample Program
 Available at /gs/hs1/tga-ppcomp/20/fib/
 Calculates the Fibonacci number

 fib(n) = fib(n-1) + fib(n-2)
 1, 1, 2, 3, 5, 8, 13…

 Execution: ./fib [n]
 ./fib 40  outputs 40th Fibonacci number

 Recursive function call is used
 It uses an inefficient algorithm as a sample

 Computational complexity: O(fib(n)) ≒ O(1.618n)

11

OpenMP Version of fib (version 1)

Available at
/gs/hs1/tga-ppcomp/20/fib-slow-omp/
 In this version,

a task = recursive call

12

long fib_r(int n)
{
long f1, f2;
if (n <= 1) return n;

#pragma omp task shared(f1)
f1 = fib_r(n-1);

#pragma omp task shared(f2)
f2 = fib_r(n-2);

#pragma omp taskwait

return f1+f2;
}

Tasks are generated

We wait for completion of
the above 2 tasks

Don’t forget “omp taskwait”

Note on
omp parallel  omp single
 We need “omp parallel & omp single” only once, but

where?

13

(Sequential) fib

main() fib() recursive calls

fib-slow-omp

main() fib_r()
recursive calls&
task generationfib()

omp parallel & omp single here

Rules about Variables
In default, copies of variables are created for each child task
 The value of “n” is brought from parent to a child task

 OK 
 But a child has a only copy  update to “f1” or “f2” is not

visible to parent. NG! 

“shared(var)” option makes the variable “var” be shared
between parent and the child
 Using it, update to “f1” or “f2” is visible to parent

14

The First Version is Too Slow

1 2 4 8

33 ~300 ~360 ~480

15

1

0.60
fib

Execution time of ./fib 40
• On a TSUBAME3.0 node

fib-slow
-omp

threads

seconds

threads

seconds

• OpenMP version is much slower than original fib
• With 1 thread, 40x slower

• Also it is much slower with multi-threads
 How can we improve?

Pitfall in “task” Syntax
 While OpenMP allows to generate many tasks, task

generation cost is not negligible
Rough comparison：

Function call cost << Task generation cost
<< Thread generation cost

 In version 1, “./fib n” generates O(fib(n)) tasks
 Too much tasks are bad!
 How can we reduce the number of tasks?

16

OpenMP Version of fib (version 2)

Available at
/gs/hs1/tga-ppcomp/20/fib-omp/

To avoid generating too
many tasks, we check n

 Changing threshold (=30)
would affect performance

If n is large, we generate
tasks
If n is small, we do not
generate

17

long fib_r(int n)
{
long f1, f2;
if (n <= 1) return n;

if (n <= 30) {
f1 = fib_r(n-1);
f2 = fib_r(n-2);

}
else {

#pragma omp task shared(f1)
f1 = fib_r(n-1);

#pragma omp task shared(f2)
f2 = fib_r(n-2);

#pragma omp taskwait
}
return f1+f2;

}

if n is “sufficiently”
small, we do not
generate tasks

Performance of Version 2

1 2 4 8

33 ~300 ~360 ~480

18

1

0.6
fib

Execution time of ./fib 40

fib-slow
-omp

threads

seconds

threads

seconds

• Performance of Version 2 is largely improved and
more stable
• With 1 thread, still 25% slower than sequential fib

 Restricting task generation is important for speed

1 2 4 8

0.75 0.46 0.29 0.21
fib-omp

threads

seconds

“sort” Sample Program
Related to Assignment [O2]

Available at /gs/hs1/tga-ppcomp/20/sort/
 Execution: ./sort [n]
 It sorts an array of length n by the quick sort algorithm

 Array elements have double type
 Compute Complexity: O(n log n) on average

 More efficient than O(n2) algorithm such as bubble sort

19

0.84 0.39 0.78 0.80 0.91 0.20 0.34 0.77

n

0.20 0.34 0.39 0.77 0.78 0.80 0.84 0.91

Quick Sort
 A recursive algorithm
 Take a value, called “pivot” from the array
 Partition array into two parts, “small” and “large”
 “small” part and “large” part are sorted recursively

20

Smaller values than “pivot” Larger values than “pivot”

O(log n)
depth

on average

Structure of sort Sample

21

int sort(double *data, int s, int e)
{
int i, j;
double pivot;
if (e-s <= 1) return 0;

/* pivot selection */
:

/* partition data[] into 2 parts */
:

/* Here “i” is boundary of 2 parts */

sort(data, s, i); /* Sort left part recursively*/
sort(data, i, e); /* Sort right part recursively */

}

Harder to parallelize

Generating 2 tasks
would be a good idea

[Q] Should we restrict too much task generation? And how?

s i e

left right
data[] array

Is it Correct to Parallelize
Recursive Calls in sort?

 Let us discuss why computations C1 and C2 can be parallelized
 Analyze read-set R and write-set W of each

22

:
sort(data, s, i); /* Sort left part recursively*/
sort(data, i, e); /* Sort right part recursively */

C1
C2

s i e

left right
data[] array

 R(C1) = W(C1) = {data[s], data[s+1], … data[i-1]}
 R(C2) = W(C2) = {data[i], data[i+1], … data[e-1]}

Disjoint
 independent!

Even with recursive task generations, this discussion can be applied

23

[Revisited]
When We Can Use “omp for”
 Loops with some (complex) forms cannot be supported,

unfortunately 
 The target loop must be in the following form
#pragma omp for

for (i = value; i op value; incr-part)

body

“op”: <, >, <=, >=, etc.

“incr-part”: i++, i--, i+=c, i-=c, etc.

OK : for (x = n; x >= 0; x-=4)

NG : for (i = 0; test(i); i++)

NG : for (p = head; p != NULL; p = p->next)

Instead, we can parallelize it with “task” syntax

Parallelize Irregular Loops with
“task” Syntax
 In list search, number of iterations cannot be

known before execution we can use “task”

24

#pragma omp parallel
#pragma omp single

{
for (p = head; p != NULL;

p = p->next) {
#pragma omp task

[Do something with p]
}

#pragma omp taskwait
}

• A task for one list node
= one OpenMP task

Note：
• The number of generated tasks =

List length.
 Task generation costs may be large

Assignments in OpenMP Part
(Abstract)
Choose one of [O1]—[O3], and submit a report
Due date: June 4 (Thu)

[O1] Parallelize “diffusion” sample program by OpenMP.
(/gs/hs1/tga-ppcomp/20/diffusion/ on TSUBAME)

[O2] Parallelize “sort” sample program by OpenMP.
(/gs/hs1/tga-ppcomp/20/sort/ on TSUBAME)

[O3] (Freestyle) Parallelize any program by OpenMP.

For more detail, please see OpenMP (1) slides on May 14
25

26

Next Class:
 OpenMP(4)
 Mutual exclusion
 Bottlenecks in parallel programs
 Job submission on TSUBAME

	Practical Parallel Computing�(実践的並列コンピューティング)�
	Overview of This Course
	Today’s Topic：Task Parallelism�~Comparison with Data Parallelism~
	Data Parallelism/Task Parallelism�in OpenMP
	Relationship of OpenMP Syntaxes
	task/taskwait Syntaxes
	Differences between �“Tasks” and “Threads”
	Note on Using “task” Syntax
	Threads Executes Tasks�(see “tasks-omp” sample)
	Number of Tasks
	“fib” Sample Program
	OpenMP Version of fib (version 1)
	Note on �omp parallel  omp single
	Rules about Variables
	The First Version is Too Slow
	Pitfall in “task” Syntax
	OpenMP Version of fib (version 2)
	Performance of Version 2
	“sort” Sample Program�Related to Assignment [O2]
	Quick Sort
	Structure of sort Sample
	Is it Correct to Parallelize Recursive Calls in sort?
	[Revisited]�When We Can Use “omp for”
	Parallelize Irregular Loops with “task” Syntax
	Assignments in OpenMP Part�(Abstract)
	Next Class:

