
1

Practical Parallel Computing
(実践的並列コンピューティング)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Part1: OpenMP (1)
May 11, 2020

Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming

 4 classes We are here (1/4)
 Part 2: GPU programming

 OpenACC and CUDA
 4 classes

 Part 3: MPI for distributed memory programming
 3 classes

2

What is OpenMP?
 One of programming APIs based on shared-memory

parallel model
 Multiple threads work cooperatively
 Threads can share data

3

Processor
cores

Memory

Hardware

Threads

Data

Thread

Data

Simple C software OpenMP software

OpenMP Programs Look Like

4

int a[100], b[100], c[100];
int i;

#pragma omp parallel for
for (i = 0; i < 100; i++) {

a[i] = b[i]+c[i];
}

An example of OpenMP
directive
In this case, a directive has
an effect on the following
block/sentence

 OpenMP defines extensions to C/C++/Fortran
 Directive syntaxes & library functions

 Directives look like: #pragma omp ~~

Sample Programs
 /gs/hs1/tga-ppcomp/20/ directory
 You have to a member of tga-ppcomp group
 There are sub-directories per sample

 Samples related to today’s class
 hello-omp
 matrix multiplication
 mm: sequential version
 mm-omp: OpenMP version

5

Using hello-omp Sample

6

[make sure that you are at a interactive node (r7i7nX)]
cd ~/t3workspace [Example in web-only route]
cp -r /gs/hs1/tga-ppcomp/20/hello-omp .
cd hello-omp
make
[this creates an executable file “hello”]
./hello

7

Compiling OpenMP Programs
All famous compilers support OpenMP (fortunately), but

require different options (unfortunately)
 gcc

 -fopenmp option in compiling and linking
 PGI compiler

 module load pgi, and then use pgcc
 -mp option in compiling and linking

 Intel compiler
 module load intel, and then use icc
 -openmp option in compiling and linking

Also see outputs of “make” in OpenMP sample directory

8

Basic Parallelism in OpenMP：
Parallel Region
#include <omp.h>

int main()
{

A;
#pragma omp parallel

{
B;

}
C;

#pragma omp parallel
D;
E;

}

Sentence/block immediately after #pragma omp parallel
is called parallel region, executed by multiple threads
 Here a “block” is a region surrounded by braces {}
 Functions called from parallel region are also in parallel region

A

B

C

D

E

Parallel
region

9

Number of Threads

 Specify number of threads by OMP_NUM_THREADS
environment variable (this is done out of program)
 cf) export OMP_NUM_THREADS=4

in command line
 In default, number of cores (including HyperThreads) are used. On

an interactive node, 7x2 = 14

 Obtain number of threads
 cf) n = omp_get_num_threads();

 Obtain “my ID” of calling thread
 cf) id = omp_get_thread_num();

 0 ≦ id < n (total number)

Outputs of hello-omp

10

Hello OpenMP World
I'm 8-th thread out of 14 threads
I'm 6-th thread out of 14 threads
I'm 9-th thread out of 14 threads
I'm 1-th thread out of 14 threads
I'm 0-th thread out of 14 threads
I'm 7-th thread out of 14 threads

:
Good Bye OpenMP World

Before the parallel region

Inside the parallel region,
each thread prints a message
for several (5) times

After the parallel regionomp_get_thread_num()

omp_get_num_threads()

Executing a Sample with
Various Number of Threads

11

[make sure that there is an executable file “hello”]
export OMP_NUM_THREADS=1
./hello

export OMP_NUM_THREADS=4
./hello

export OMP_NUM_THREADS=7
./hello

export OMP_NUM_THREADS=14
./hello

How Can We Make a Program
Faster?

12

thread
Only with one thread With 4 threads

i=0 i=99 i=0 i=99

for (i = 0; i < 100; i++) { some computation; }

thread 0: for (i = 0 ; i < 25; …
thread 1: for (i = 25; i < 50; …
thread 2: for (i = 50; i < 75; …
thread 3: for (i = 75; i < 100; …

assumption: 100 tasks are independent with each other

OpenMP has a syntax to do this smarter

13

#pragma omp for
for Easy Parallel Programming
“for” loop with simple forms can parallelized easily

{
#pragma omp parallel

{
int i;

#pragma omp for
for (i = 0; i < 100; i++) {

a[i] = b[i]+c[i];
}

}
}

#pragma omp for must be
• inside a parallel region
• right before a “for” loop

 Computations in the loop are
distributed among threads (work
distribution)

• With 4 threads, each thread take
100/4=25 iterations  speed up!!
・ Indivisible cases are ok, such as 7
threads

• Abbreviation: omp parallel + omp for = omp parallel for

Why “omp for” Reduces
Execution Time

 What if we use “omp parallel”, but forget to write “omp for”?

14

thread
Only with one thread With several threads

i=0 i=99 i=0 i=99

Every thread would work
for all iterations
No speed up 
Answer will be wrong 

15

“mm” sample: Matrix Multiply

A: a (m×k) matrix
B: a (k×n) matrix
C: a (m×n) matrix

C ← A B
 This sample supports variable

matrix sizes
 Execution: ./mm [m] [n] [k]

CA

B

m

k

k

n

Available at /gs/hs1/tga-ppcomp/20/mm/

for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {

for (i = 0; i < m; i++) {
C[i+j*ldc] += A[i+l*lda] * B[l+j*ldb];

} } }

OpenMP Version of mm
(mm-omp)

 There are 3 loops. Here, j loop is parallelized

#pragma omp parallel private(i,l)
#pragma omp for

for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {

for (i = 0; i < m; i++) {
C[i+j*ldc] += A[i+l*lda] * B[l+j*ldb];

} } }

16

← j loop is parallelized

• What is “private” option? explained later

0

5

10

15

20

25

30

256 512 1024 2048 4096 8192

Sp
ee

d
(G

Fl
op

s)

m=n=k

4 threads 8 threads

Performance of mm sample

 A TSUBAME3 node (Xeon E5-2680 v4 x2 = 28core)
 Speed is (2mnk/t)

17

m=n=k=2048,
Varying # of threads

8 threads,
Varying m=n=k Should be constant

“theoretically”. There
are effects of cache

0
10
20
30
40
50
60
70

0 10 20 30

Sp
ee

d
(G

Fl
op

s)

Number of threads

18

Shared Variables &
Private Variables (1)
While OpenMP uses “shared memory model”, not all are shared

In default, variables are classified as follows
 Variables declared out of parallel region ⇒ Shared variables
 Global variables ⇒ Shared variables
 Variables declared inside parallel region ⇒ Private variables
{

int s = 1000;
#pragma omp parallel

{
int i;
i = func(s, omp_get_thread_num());
printf(“%d¥n”, i);

}
}

int func(int a, int b)
{

int rc = a+b;
return rc;

}

shared

private
private

Shared Variables &
Private Variables (2)
We let x, y be shared, and z be private

19

gridDim.xは3、
blockDim.xは2
gridDim.xは3、
blockDim.xは2
gridDim.xは3、
blockDim.xは2
gridDim.xは3、
blockDim.xは2

x is 123
y is 456

z is
15

z is
4

z is
7

z is
4

z is
21

z is
9

 When a thread updates a shared variable, other threads
are affected
 We should be careful and careful!

Single instance
for each x, y

Each thread has
its own instance for z

Pitfall in Nested Loops (1)
 The following sample looks ok, but there is a bug

 We do not see compile errors, but answers would be wrong 

20

int i, j;
#pragma omp parallel
#pragma omp for
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {

…
} }

Both i, j are declared
outside parallel region
Considered “shared”
It is a problem to share j

cf)
Thread A is executing i=5 loop
Thread B is executing i=8 loop

The executions should be independent
Each execution must include
j=0, j=1…j=n-1 correctly
j must be private

Pitfall in Nested Loops (2)
Two modifications (Either is ok)

21

int i;
#pragma omp parallel for
for (i = 0; i < m; i++) {
int j; // j is private
for (j = 0; j < n; j++) {

…
} }

int i, j;
#pragma omp parallel for private(j)

// j is forcibly private
for (i = 0; i < m; i++) {

for (j = 0; j < n; j++) {
…

} }

How about Arrays

22

A

B

C

j

 In mm sample, pointers A, B, C
are global variables  shared
variables

 Since all threads see same
variables of A, B, C, contents of
arrays are also shared

 It is programmers responsibility
to make each thread does
independent computation

OpenMP Version of mm
(Again)
 One of loops is parallelized
#pragma omp parallel private(i,l)
#pragma omp for

for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {

for (i = 0; i < m; i++) {
C[i+j*ldc] += A[i+l*lda] * B[l+j*ldb];

} } }

23

j loop is parallelized
 Each thread executes computations

only for subset of [0, n)

[Q] What if we parallelize other loops?
 i loop is ok for correct answers, but may be slow
 l loop causes wrong answers!

Correct Parallelization and
Bad Parallelization

24

A

B

C

Simultaneous read from same data
(in this case, A) is OK

Parallelizing j loop

Similarly, parallelizing
i loop is ok

Parallelizing l loop (??)

A

B

C

Possible simultaneous write to
same data
 “Race condition” problem

may occur.
Answers may be wrong !!

j

l
l

Today’s Summary
Introduction to OpenMP parallel programming
Multiple threads work simultaneously with
#pragma omp parallel
With #pragma omp for, loop-based programs can
be parallelized easily
But it is programmer’s responsibility to avoid bugs
caused by race conditions

25

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

26

Part 1
OpenMP

Part 2
GPU

Part 3
MPI

[O1] diffusion
[O2] sort
[O3] free

[G1]
[G2]
[G3]

[M1]
[M2]
[M3]

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

27

Assignments in OpenMP Part (1)
Choose one of [O1]—[O3], and submit a report
Due date: June 4 (Thu)

[O1] Parallelize “diffusion” sample program by OpenMP.
(/gs/hs1/tga-ppcomp/20/diffusion/ on TSUBAME)

Optional：
 To make array sizes variable parameters, which are

specified by execution options. “malloc” will be needed.
 To parallelize it without “omp for”
 omp_get_thread_num(), omp_get_num_threads() are needed

28

Assignments in OpenMP Part (2)
[O2] Parallelize “sort” sample program by OpenMP.

(/gs/hs1/tga-ppcomp/20/sort/ on TSUBAME)

Optional：
 Comparison with other algorithms than quick sort
 Heap sort? Merge sort?

29

Assignments in OpenMP Part (3)
[O3] (Freestyle) Parallelize any program by OpenMP.

 cf) A problem related to your research
 More challenging one for parallelization is better

 cf) Partial computations have dependency with each other
 cf) Uniform task division is not good for load balancing

30

Notes in Report Submission (1)

 Submit the followings via OCW-i
(1) A report document

 PDF, MS-Word or text file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 Try “zip” to submit multiple files

31

Notes in Report Submission (2)

The report document should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or
new functions

 Performance evaluation on TSUBAME
 With varying number of threads

 On a interactive nodes, 1 ≦ OMP_NUM_THREADS ≦ 14
 To use more CPU cores, you need to do “job submission”

 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

If You Have Not Done This Yet
Please do the followings as soon as possible
Please make your account on TSUBAME
Please send an e-mail to ppcomp@el.gsic.titech.ac.jp

32

Subject: TSUBAME3 ppcomp account
To: ppcomp@el.gsic.titech.ac.jp

Department name:
School year:
Name:
Your TSUBAME account name:

Then we will invite you to the TSUBAME group, please click URL
and accept the invitation
その後、TSUBAMEグループへの招待を送ります。メール中の
URLをクリックして参加承諾してください

33

Next Class:
 Part1: OpenMP (2)
 diffusion： simple simulation of diffusion

phenomena
 Related to assignment [O1]

	Practical Parallel Computing�(実践的並列コンピューティング)�
	Overview of This Course
	What is OpenMP?
	OpenMP Programs Look Like
	Sample Programs
	Using hello-omp Sample
	Compiling OpenMP Programs
	Basic Parallelism in OpenMP：�Parallel Region
	Number of Threads
	Outputs of hello-omp
	Executing a Sample with�Various Number of Threads
	How Can We Make a Program Faster?
	#pragma omp for�for Easy Parallel Programming
	Why “omp for” Reduces Execution Time
	“mm” sample: Matrix Multiply
	OpenMP Version of mm�(mm-omp)
	Performance of mm sample
	Shared Variables &�Private Variables (1)
	Shared Variables &�Private Variables (2)
	Pitfall in Nested Loops (1)
	Pitfall in Nested Loops (2)
	How about Arrays
	OpenMP Version of mm (Again)
	Correct Parallelization and�Bad Parallelization
	Today’s Summary
	Assignments in this Course
	Assignments in OpenMP Part (1)
	Assignments in OpenMP Part (2)
	Assignments in OpenMP Part (3)
	Notes in Report Submission (1)
	Notes in Report Submission (2)
	If You Have Not Done This Yet
	Next Class:

