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“mm” sample: Matrix Multiply
(Revisited, related to [M2])

A: a (m×k) matrix, B: a (k×n) 
matrix

C: a (m×n) matrix
C ← A × B

 Algorithm with a triple for loop
 Supports variable matrix size. 
 Each matrix is expressed as a 1D 

array by column-major format

CA

B

m

k

k

n

MPI version available at /gs/hs1/tga-ppcomp/20/mm-mpi/

Execution: mpiexec -n [#proc] ./mm [m] [n] [k]
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Programming Data Distribution
(for mm-mpi sample)

A
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C3

A

B

C

Design distribution
method:

I will divide B, C 
vertically.
I will put replicas of
A on every process...

Programming actual location:

This is not a unique solution. How about other solutions?



Discussion on Considering 
Data Distribution
 Choice of data distribution have impact on
 Communication cost
 Memory consumption cost

 In mm-mpi, every process has a coppy of matrix A 
memory consumption is large

 (Sometimes, computation cost)

 Smaller cost is better
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Other Data Distribution Methods?
 Ci,j requires i-th row of A and j-th column of B

A

B

C

C is divided in col-wise
⇒ Similarly B

A is replicated

A

B

C

C is divided in row-wise
⇒ Similarly A

B is replicated

0 1
2 3

0&1
2&3

1&30&2

C is divided in 2D
⇒ A:row-wise + replica

B:col-wise + replica

Among them, the third version has lowest memory consumption

Total Comm. 0 0 0
Totel Mem. O(mkp+nk+mn) O(mk+nkp+mn) O(mkp1/2+nkp1/2+mn)

p: the number of processes
Note: If initial matrix is owned by one process, we need 
communication before computation

nk
m



Reducing Memory Consumption
Further
 Even in the third version, memory consumption is 

O(mkp1/2+nkp1/2+mn) >  O(mk+nk+mn) (theoretical minimum)
 If p=10000, we consume 100x larger memory 
 we cannot solve larger problems on supercomputers

 To reduce memory consumption, we want to eliminate replica!
 But this increases communication costs

6

Trade-off: a balance achieved 
between two desirable but 
incompatible features
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Data Distribution with Less 
Memory Consumption

Algorithm
Step 0：
P0 sends A0 to all other processes
Every process Pr computes

Cr += A0 × B0,r

Step 1：
P1 sends A1 to all other processes
Every process Pr computes

Cr += A1 × B1,r

:
Repeat until Step (p-1)

A
B

Not only B/C, but A is divided
among all processes
(In this example, column-wise)
⇒ We need communication!

C0 C1 C2 C3

A0
A1

A2
A3

B0,0
B1,0
B2,0
B3,0

B0,1
B1,1
B2,1
B3,1

B0,2
B1,2
B2,2
B3,2

B0,3
B1,3
B2,3
B3,3

Total Comm: O(mkp)    Total Mem: O(mk+nk+mn)
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Actual Data Distribution of 
Memory Reduced Version

 Additionally, every process should prepare a receive 
buffer  A’ in the figure
 A’ (instead of A) is used for arguments of MPI_Recv()
 On receivers, A’ is used for computation

BL

CL

BL

CL

AL A’ AL A’

Every process has partial A, 
B, C
 AL on process r  Ar
 BL on process r  Br
 CL on process r  Cr

[Q] What if a process uses AL for MPI_Recv() ?



Programming Memory Reduced 
Matrix Multiplication
On every process r:

for (i = 0; i < size; i++) {   // size: number of processes
if (r == i) {

for (dest = 0; dest < size; dest++)
if (dest != r) MPI_Send(AL, …, dest, …);

} else
MPI_Recv(A’, …, i, …);

if (r == i)
Compute CL += AL× BL,i

else 
Compute CL += A’× BL,i

}
9

Pi sends its AL to all 
other processes

BL

BL,0
BL,1



Improvements of Memory 
Reduced Version
Followings are options (NOT mandatory) in assignments [M2]

1.To use collective communications (explained hereafter)

2.To use SUMMA: scalable universal matrix multiplication 
algorithm

 See http://www.netlib.org/lapack/lawnspdf/lawn96.pdf
 Replica is eliminated, and matrices are divided in 2D
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Peer-to-peer Communications vs
Collective Communications
 Communications we have learned are called peer-to-

peer communications
 A process sends a message. A process receives it

※ MPI_Irecv, MPI_Isend are also peer-to-peer communications

Send! Recv!

Blocking Non-Blocking

Peer-to-Peer MPI_Send, 
MPI_Recv…

MPI_Isend,
MPI_Irecv…

Collective MPI_Bcast,
MPI_Reduce…

(MPI_Ibcast,
MPI_Ireduce…)



12

Collective Communications
（Group Communications)

 Collective communications involves many processes
 MPI provides several collective communication patterns

 Bcast, Reduce, Gather, Scatter, Barrier・・・
 All processes must call the same communication function

 Something happens for all of them

Reduce! Reduce! Reduce! Reduce! Reduce!
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One of Collective Communications: 
Broadcast by MPI_Bcast

cf) rank 0 has “int a” (called root process). We want to 
send it to all other processes

MPI_Bcast(&a, 1, MPI_INT, 0, MPI_COMM_WORLD);
 All processes (in the communicator) must call MPI_Bcast(), 

including rank 0
 All other process will receive the value on memory region a
rank 0

5a

rank 1

a

rank 2

a

rank 3

a5 5 5

※ What is the role of 1st argument?
it is “input” on the root process, and “output” on other processes
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MPI_Bcast Can Be Used in
Memory Reduced MM

 In Step i, rank i becomes the root
 It sends AL to all other processes
 This is “broadcast” pattern. We can use MPI_Bcast!
Note: Root wants to send AL. Others want to receive data into A’
 Different pointers

BL

CL

BL

CL

AL A’ AL A’ BL

CL

AL A’

Solution 1:
if (I am rank i) copies AL to A’
MPI_Bcast(A’, … );

Solution 2:
if (I am rank i) {MPI_Bcast(AL, …); }
else {MPI_Bcast(A’, …); }

rank 0 rank 1 rank 2



“Do I Really Need to Learn 
New Functions?”
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 MPI_Bcast are faster, especially when p is larger !
 The reason is MPI uses “scalable” communication algorithms

cf) http://www.mcs.anl.gov/~thakur/papers/mpi-coll.pdf

faster faster

 You can still use MPI_Send/MPI_Recv multiple times, 
but collective functions are often faster
In the graph, rank 0 called MPI_Send for p-1 times to other processes

measured
on TSUBAME2



16

Reduction by MPI_Reduce
cf) Every process has “int a”. We want the sum of them

MPI_Reduce(&a, &b, 1, MPI_INT, MPI_SUM, 0,    
MPI_COMM_WORLD);

 Every process must call MPI_Reduce()

 The sum is put on b on root process (rank 0 now)

 Operation is one of MPI_SUM, MPI_PROD(product), 
MPI_MAX, MPI_MIN, MPI_LAND (logical and), etc.

rank 0

4a
rank 1

7a
rank 2

1a
rank 3

2a

b b b b14

root processoperation
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1

x

y

dx
dx = 1/n
y = sqrt(1-x*x)

MPI Version of “pi” Sample
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/gs/hs1/tga-ppcomp/20/pi-mpi/
 Execution：mpiexec -n [#procs] ./pi [n]

 n: Number of division
 Cf) ./pi 100000000

 We divide n tasks among processes and 
calculate total yellow area

1. Each process calculates local sum
2. Rank 0 obtains the final sum by 

MPI_Reduce



Note: Differences with “omp 
for reduction” in OpenMP

 Syntaxes are completely different
 Computations are also different
 #pragma omp for reduction(…) in OpenMP

 Do “sum += a[i]” in parallel for loop with reduction(+:s)

 MPI_Reduce(…) in MPI
 If each input is an array, output is also an array
 Operations are done for each index

18

4 7 2 3 0 1 5 6 5 sum=33

4 7 2 3 0 1 5 6 5 12 13 8



19

MPI_Allreduce
 Allreduce = Reduction + Bcast

MPI_Allreduce(&a, &b, 1, MPI_INT, MPI_SUM,     
MPI_COMM_WORLD);

 The sum is put on b on all processes

rank 0

4a
rank 1

7a
rank 2

1a
rank 3

2a

b b b b14 14 14 14

Important communication pattern for distributed deep 
learning  Google “allreduce deep learning”



MPI_Barrier
 Barrier synchronization: processes are 

stopped until all processes reach the point
MPI_Barrier(MPI_COMM_WORLD);

 Used in sample programs, to measure execution time 
more precisely
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Other Collective 
Communications
 MPI_Scatter

 An array on a process is “scattered” to all processes
 cf) Process 0 has an array of length 10,000. There are 10 processes. 

The array is divided to parts of length 1,000 and scattered
 MPI_Gather

 Data on all processes are “gathered” to the root process. 
 Contrary to MPI_Scatter

 MPI_Allgather
 Similar to MPI_Gather. Gathered data are put on all processes

21

NCCL manual at
docs.nvidia.com



Why are Collective 
Communications Fast?
 Since MPI library uses scalable communication algorithms

 Case of broadcast:

Flat tree algorithm Binomial tree algorithm

Scatter

All-
gather

Scatter&Allgather 
algorithm



Model of Communication Time
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T  =  M  /  B  +  L

T: Communication time
M: Data size
B: Bandwidth
L: Network latency

Time

Rank 0 Rank 1

L

M/B

※ Be aware of difference between 
“Byte” and “bit”: 1Byte=8bit

※ Actually it is more complex for effects of network topology, 
congestion, packet size, error correction…

Illustration of peer-to-peer communication of data size M



Cost Model of Broadcast 
Algorithms

 Case of “broadcast” of size M data
 p: number of processes, B: network bandwidth, L: network latency

p(M/B+L)
 Slow

(log p)(M/B+L)

Flat tree algorithm Binomial tree algorithm

M/B+L M/B+L log p
steps



One of Scalable Broadcast 
Algorithms
 Scatter&Allgather algorithm

 Message is divided into p parts
 Better than “binomial tree” if M is larger

25

M/B + pL +
M/B + (log p)L

R. Thakur and W. Gropp. Improving 
the performance of collective 
operations in mpich. EuroPVM/MPI 
conference, 2003.

Scatter

All-
gather

Scatter

All-gather

M/p



Comparison of Broadcast 
Algorithms
 Consider two extreme cases
 If M is sufficiently large: M/B+L  M/B
 If M is close to zero: M/B+L  L

26

Flat Tree Binomial Tree Scatter&
All-gather

Cost (General) p(M/B+L) (log p) (M/B+L) 2M/B + (p + log p)L

Cost with
very large M

p M/B (log p) M/B 2 M/B
 Fastest

Cost with
very small M

p L (log p) L
 Fastest

(p + log p) L

Many MPI libraries implement multiple algorithms
They switch them automatically according to message size M 



We Have Learned
 Part 1: Shared memory parallel programming with 

OpenMP
 Part 2: GPU programming with OpenACC and CUDA
 Part 3: Distributed memory parallel programming with MPI

Many common strategies towards faster software:
 To understand source of bottleneck
 Reducing computation and communication
 Overlapping computation and communication
 To understand property of architecture

Let’s enjoy high performance computing! 27



Assignments in MPI Part
(Abstract)
Choose one of [M1]—[M3], and submit a report
Due date: 11AM, June 29 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.
[M2] Improve mm-mpi sample in order to reduce memory 

consumption.
[M3] (Freestyle) Parallelize any program by MPI.

For more detail, please see June 11 slides

28
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