
1

Practical Parallel Computing
(実践的並列コンピューティング)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Part３: MPI (３)
June 18, 2020

2

“mm” sample: Matrix Multiply
(Revisited, related to [M2])

A: a (m×k) matrix, B: a (k×n)
matrix

C: a (m×n) matrix
C ← A × B

 Algorithm with a triple for loop
 Supports variable matrix size.
 Each matrix is expressed as a 1D

array by column-major format

CA

B

m

k

k

n

MPI version available at /gs/hs1/tga-ppcomp/20/mm-mpi/

Execution: mpiexec -n [#proc] ./mm [m] [n] [k]

3

Programming Data Distribution
(for mm-mpi sample)

A

B0

AC0

B1

C1 A

B2

C2 A

B3

C3

A

B

C

Design distribution
method:

I will divide B, C
vertically.
I will put replicas of
A on every process...

Programming actual location:

This is not a unique solution. How about other solutions?

Discussion on Considering
Data Distribution
 Choice of data distribution have impact on
 Communication cost
 Memory consumption cost

 In mm-mpi, every process has a coppy of matrix A 
memory consumption is large

 (Sometimes, computation cost)

 Smaller cost is better

4

5

Other Data Distribution Methods?
 Ci,j requires i-th row of A and j-th column of B

A

B

C

C is divided in col-wise
⇒ Similarly B

A is replicated

A

B

C

C is divided in row-wise
⇒ Similarly A

B is replicated

0 1
2 3

0&1
2&3

1&30&2

C is divided in 2D
⇒ A:row-wise + replica

B:col-wise + replica

Among them, the third version has lowest memory consumption

Total Comm. 0 0 0
Totel Mem. O(mkp+nk+mn) O(mk+nkp+mn) O(mkp1/2+nkp1/2+mn)

p: the number of processes
Note: If initial matrix is owned by one process, we need
communication before computation

nk
m

Reducing Memory Consumption
Further
 Even in the third version, memory consumption is

O(mkp1/2+nkp1/2+mn) > O(mk+nk+mn) (theoretical minimum)
 If p=10000, we consume 100x larger memory 
 we cannot solve larger problems on supercomputers

 To reduce memory consumption, we want to eliminate replica!
 But this increases communication costs

6

Trade-off: a balance achieved
between two desirable but
incompatible features

7

Data Distribution with Less
Memory Consumption

Algorithm
Step 0：
P0 sends A0 to all other processes
Every process Pr computes

Cr += A0 × B0,r

Step 1：
P1 sends A1 to all other processes
Every process Pr computes

Cr += A1 × B1,r

:
Repeat until Step (p-1)

A
B

Not only B/C, but A is divided
among all processes
(In this example, column-wise)
⇒ We need communication!

C0 C1 C2 C3

A0
A1

A2
A3

B0,0
B1,0
B2,0
B3,0

B0,1
B1,1
B2,1
B3,1

B0,2
B1,2
B2,2
B3,2

B0,3
B1,3
B2,3
B3,3

Total Comm: O(mkp) Total Mem: O(mk+nk+mn)

8

Actual Data Distribution of
Memory Reduced Version

 Additionally, every process should prepare a receive
buffer  A’ in the figure
 A’ (instead of A) is used for arguments of MPI_Recv()
 On receivers, A’ is used for computation

BL

CL

BL

CL

AL A’ AL A’

Every process has partial A,
B, C
 AL on process r  Ar
 BL on process r  Br
 CL on process r  Cr

[Q] What if a process uses AL for MPI_Recv() ?

Programming Memory Reduced
Matrix Multiplication
On every process r:

for (i = 0; i < size; i++) { // size: number of processes
if (r == i) {

for (dest = 0; dest < size; dest++)
if (dest != r) MPI_Send(AL, …, dest, …);

} else
MPI_Recv(A’, …, i, …);

if (r == i)
Compute CL += AL× BL,i

else
Compute CL += A’× BL,i

}
9

Pi sends its AL to all
other processes

BL

BL,0
BL,1

Improvements of Memory
Reduced Version
Followings are options (NOT mandatory) in assignments [M2]

1.To use collective communications (explained hereafter)

2.To use SUMMA: scalable universal matrix multiplication
algorithm

 See http://www.netlib.org/lapack/lawnspdf/lawn96.pdf
 Replica is eliminated, and matrices are divided in 2D

10

11

Peer-to-peer Communications vs
Collective Communications
 Communications we have learned are called peer-to-

peer communications
 A process sends a message. A process receives it

※ MPI_Irecv, MPI_Isend are also peer-to-peer communications

Send! Recv!

Blocking Non-Blocking

Peer-to-Peer MPI_Send,
MPI_Recv…

MPI_Isend,
MPI_Irecv…

Collective MPI_Bcast,
MPI_Reduce…

(MPI_Ibcast,
MPI_Ireduce…)

12

Collective Communications
（Group Communications)

 Collective communications involves many processes
 MPI provides several collective communication patterns

 Bcast, Reduce, Gather, Scatter, Barrier・・・
 All processes must call the same communication function

 Something happens for all of them

Reduce! Reduce! Reduce! Reduce! Reduce!

13

One of Collective Communications:
Broadcast by MPI_Bcast

cf) rank 0 has “int a” (called root process). We want to
send it to all other processes

MPI_Bcast(&a, 1, MPI_INT, 0, MPI_COMM_WORLD);
 All processes (in the communicator) must call MPI_Bcast(),

including rank 0
 All other process will receive the value on memory region a
rank 0

5a

rank 1

a

rank 2

a

rank 3

a5 5 5

※ What is the role of 1st argument?
it is “input” on the root process, and “output” on other processes

14

MPI_Bcast Can Be Used in
Memory Reduced MM

 In Step i, rank i becomes the root
 It sends AL to all other processes
 This is “broadcast” pattern. We can use MPI_Bcast!
Note: Root wants to send AL. Others want to receive data into A’
 Different pointers

BL

CL

BL

CL

AL A’ AL A’ BL

CL

AL A’

Solution 1:
if (I am rank i) copies AL to A’
MPI_Bcast(A’, …);

Solution 2:
if (I am rank i) {MPI_Bcast(AL, …); }
else {MPI_Bcast(A’, …); }

rank 0 rank 1 rank 2

“Do I Really Need to Learn
New Functions?”

15

0

100

200

300

400

500

0 10 20 30 40

Ti
m

e
(m

s)

Number of Processes

64MB message

Send&Recv

MPI_Bcast

0

100

200

300

400

500

0 20 40 60 80
Ti

m
e

(m
s)

Message size (MB)

32 processes

Send&Recv

MPI_Bcast

 MPI_Bcast are faster, especially when p is larger !
 The reason is MPI uses “scalable” communication algorithms

cf) http://www.mcs.anl.gov/~thakur/papers/mpi-coll.pdf

faster faster

 You can still use MPI_Send/MPI_Recv multiple times,
but collective functions are often faster
In the graph, rank 0 called MPI_Send for p-1 times to other processes

measured
on TSUBAME2

16

Reduction by MPI_Reduce
cf) Every process has “int a”. We want the sum of them

MPI_Reduce(&a, &b, 1, MPI_INT, MPI_SUM, 0,
MPI_COMM_WORLD);

 Every process must call MPI_Reduce()

 The sum is put on b on root process (rank 0 now)

 Operation is one of MPI_SUM, MPI_PROD(product),
MPI_MAX, MPI_MIN, MPI_LAND (logical and), etc.

rank 0

4a
rank 1

7a
rank 2

1a
rank 3

2a

b b b b14

root processoperation

17

1

x

y

dx
dx = 1/n
y = sqrt(1-x*x)

MPI Version of “pi” Sample

17

/gs/hs1/tga-ppcomp/20/pi-mpi/
 Execution：mpiexec -n [#procs] ./pi [n]

 n: Number of division
 Cf) ./pi 100000000

 We divide n tasks among processes and
calculate total yellow area

1. Each process calculates local sum
2. Rank 0 obtains the final sum by

MPI_Reduce

Note: Differences with “omp
for reduction” in OpenMP

 Syntaxes are completely different
 Computations are also different
 #pragma omp for reduction(…) in OpenMP

 Do “sum += a[i]” in parallel for loop with reduction(+:s)

 MPI_Reduce(…) in MPI
 If each input is an array, output is also an array
 Operations are done for each index

18

4 7 2 3 0 1 5 6 5 sum=33

4 7 2 3 0 1 5 6 5 12 13 8

19

MPI_Allreduce
 Allreduce = Reduction + Bcast

MPI_Allreduce(&a, &b, 1, MPI_INT, MPI_SUM,
MPI_COMM_WORLD);

 The sum is put on b on all processes

rank 0

4a
rank 1

7a
rank 2

1a
rank 3

2a

b b b b14 14 14 14

Important communication pattern for distributed deep
learning  Google “allreduce deep learning”

MPI_Barrier
 Barrier synchronization: processes are

stopped until all processes reach the point
MPI_Barrier(MPI_COMM_WORLD);

 Used in sample programs, to measure execution time
more precisely

20

Other Collective
Communications
 MPI_Scatter

 An array on a process is “scattered” to all processes
 cf) Process 0 has an array of length 10,000. There are 10 processes.

The array is divided to parts of length 1,000 and scattered
 MPI_Gather

 Data on all processes are “gathered” to the root process.
 Contrary to MPI_Scatter

 MPI_Allgather
 Similar to MPI_Gather. Gathered data are put on all processes

21

NCCL manual at
docs.nvidia.com

Why are Collective
Communications Fast?
 Since MPI library uses scalable communication algorithms

 Case of broadcast:

Flat tree algorithm Binomial tree algorithm

Scatter

All-
gather

Scatter&Allgather
algorithm

Model of Communication Time

23

T = M / B + L

T: Communication time
M: Data size
B: Bandwidth
L: Network latency

Time

Rank 0 Rank 1

L

M/B

※ Be aware of difference between
“Byte” and “bit”: 1Byte=8bit

※ Actually it is more complex for effects of network topology,
congestion, packet size, error correction…

Illustration of peer-to-peer communication of data size M

Cost Model of Broadcast
Algorithms

 Case of “broadcast” of size M data
 p: number of processes, B: network bandwidth, L: network latency

p(M/B+L)
 Slow

(log p)(M/B+L)

Flat tree algorithm Binomial tree algorithm

M/B+L M/B+L log p
steps

One of Scalable Broadcast
Algorithms
 Scatter&Allgather algorithm

 Message is divided into p parts
 Better than “binomial tree” if M is larger

25

M/B + pL +
M/B + (log p)L

R. Thakur and W. Gropp. Improving
the performance of collective
operations in mpich. EuroPVM/MPI
conference, 2003.

Scatter

All-
gather

Scatter

All-gather

M/p

Comparison of Broadcast
Algorithms
 Consider two extreme cases
 If M is sufficiently large: M/B+L  M/B
 If M is close to zero: M/B+L  L

26

Flat Tree Binomial Tree Scatter&
All-gather

Cost (General) p(M/B+L) (log p) (M/B+L) 2M/B + (p + log p)L

Cost with
very large M

p M/B (log p) M/B 2 M/B
 Fastest

Cost with
very small M

p L (log p) L
 Fastest

(p + log p) L

Many MPI libraries implement multiple algorithms
They switch them automatically according to message size M 

We Have Learned
 Part 1: Shared memory parallel programming with

OpenMP
 Part 2: GPU programming with OpenACC and CUDA
 Part 3: Distributed memory parallel programming with MPI

Many common strategies towards faster software:
 To understand source of bottleneck
 Reducing computation and communication
 Overlapping computation and communication
 To understand property of architecture

Let’s enjoy high performance computing! 27

Assignments in MPI Part
(Abstract)
Choose one of [M1]—[M3], and submit a report
Due date: 11AM, June 29 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.
[M2] Improve mm-mpi sample in order to reduce memory

consumption.
[M3] (Freestyle) Parallelize any program by MPI.

For more detail, please see June 11 slides

28

	Practical Parallel Computing�(実践的並列コンピューティング)�
	“mm” sample: Matrix Multiply�(Revisited, related to [M2])
	Programming Data Distribution�(for mm-mpi sample)
	Discussion on Considering Data Distribution
	Other Data Distribution Methods?
	Reducing Memory Consumption�Further
	Data Distribution with Less Memory Consumption
	Actual Data Distribution of Memory Reduced Version
	Programming Memory Reduced Matrix Multiplication
	Improvements of Memory Reduced Version
	Peer-to-peer Communications vs�Collective Communications
	Collective Communications�（Group Communications)
	One of Collective Communications: Broadcast by MPI_Bcast
	MPI_Bcast Can Be Used in�Memory Reduced MM
	“Do I Really Need to Learn New Functions?”
	Reduction by MPI_Reduce
	MPI Version of “pi” Sample
	Note: Differences with “omp for reduction” in OpenMP
	MPI_Allreduce
	MPI_Barrier
	Other Collective Communications
	Why are Collective Communications Fast?
	Model of Communication Time
	Cost Model of Broadcast Algorithms
	One of Scalable Broadcast Algorithms
	Comparison of Broadcast Algorithms
	We Have Learned
	Assignments in MPI Part�(Abstract)

