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Overview of This Course °

e Part O: Introduction
e 2 classes

e Part 1. OpenMP for shared memory programming
e 4 classes

e Part 2: GPU programming
e 4 classes € We are here (1/4)
e OpenACC (1.5 classes) and CUDA (2.5 classes)

e Part 3: MPI for distributed memory programming
e 3 classes € We are here (1/3)
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How We Can Use Many Nodes

1. Submit several jobs into job scheduler

e cf) Program executions with different parameters -
Parameter Sweep

e Jobs are dependent, and no cooperation

compute node

2. Use distributed memory programming > A single job
can use multiple nodes

e Socket programming, Hadoop, Spark...
e And MPI




Classification of Parallel 3
Programming Models "
S tial Shared memory Distributed memory
squentia prog. model prog. model
T 1 1 1
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Programming  Threads have access Need communication

without to shared data among processes
parallelsim * OpenMP * MPI
* pthread  socket

 Java thread... * Hadoop, Spark...
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MPI (message-passing t
interface)

e Parallel programming interface based on
distributed memory model

e Used by C, C++, Fortran programs
Programs call MPI library functions, for message
passing etc.

e There are several MPI libraries
OpenMPI (default) < OpenMPI # OpenMP ®
Intel MPI, SGI MPE, MVAPICH, MPICH...



Differences from OpenMP

In MPI,

e An execution consists of multiple processes (not threads)
e We can use multiple nodes ©
e The number of running processes is basically constant

e No variables are shared. Instead message passing is used
e Data distribution has to be programmed

e No smart syntaxes such as “omp for” or “omp task” ®
o Task distribution has to be programmed ®



First MPlI Sample

e /gs/hs1/tga-ppcomp/20/hello-mpi

module load cuda openmpi
cd ~/t3workspace

cd hello-mpi
make

mpiexec -n 7 ./hello

cp -r /gs/hs1/tga-ppcomp/20/hello-mpi .




Compiling and Executing HE
MPI Programs -

Case of OpenMPI library on TSUBAME3.0

e [0 compile Required for module dependency®

e module load cuda openmpi, and then use mpicc
e For sample programs, “make” command works

e Toexecute __—~Number of processes
e mpiexec -n 7 ./hello

e ./hello € only 1 process is used

T These methods uses 1 (current) node. For multi-nodes, we need
“job submission



N ote s o n Account crestion
oo | in TSUBAME porial
[Standard route T

| Windowsa] Instal 1erminal apo | | WEh'Dnl}r route | .

“Standard route” g

| Login ‘{“ 'f‘” W\ (blogine |
| |

<.
| Start "web service® |

Le=g-in t interactive node

>4

e On an interactive node via “standard route”, qsub/qgstat
commands are not found

e Please use
e (grsh -q interactive -l h_rt=2:00:00 -v PATH
instead of qrsh -q interactive -l h_rt=2:00:00

e By doing that, PATH environment variable on login node is
passed to interactive node
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Submit an MPI Job

(case of OpenMPI)

e \We are going to execute it with 4 processes X 2 nodes =

8 processes
(1) Make a script file: job.sh

#!/bin/sh
/ 4core node x 2

#3$ -cwd
#$ -1 g_core=2
#$ -l h_rt=00:10:00

. letc/profile.d/modules.sh Module
module load cuda openmpi

mpiexec - 8 —npernodg 4 ./hello

Number of
processes

/ / \

Number of Program name
processes (and option)
per node

(2) Submit the job with “gsub”

gsub job.sh
(=0:10:00, =2node for free)

preparation qsub —g tga-ppcomp job.sh

(if you use the group)
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Notes in This Lecture

e Usually, avoid consumption of TSUBAME points

o BEFEIEIWMHFIADELHEHICLLEHT LY
h_rt <=0:10:00

e If necessary for reports, you can use up to 72,000 points
In total per student

o KEHOLR—FDERICBDELBE . — ABIYBEHT
72,0004 M ETRIREROHET

f node x 1node x 20 hours

e Please check point consumption on TSUBAME portal
e The TSUBAME group name is tga-ppcomp
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Nodes, Cores, MPI Processes

#$ -l q_core=2 #$ -l s_core=8 #$ -l g_node=2

mpirun —n 8 —npernode 4 mpirun —n 8 —npernode 1 mpirun —n 11 —npernode 6
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2 (virtual) nodes are prepared 8 (virtual) nodes are prepared 2 (virtual) nodes are prepared
Each node has 4 cores (q_core) Each node has 1 cores (s_core) Each node has 7 cores (q_node)

4 processes are created per 1 processes are created per 6 processes are created per
node. Totally 8 are created node. Totally 8 are created node. Totally 11 are created
—> 2 nodes are used —> 8 nodes are used > 2 nodes are used

(There are idle cores) '3



An MPI Program Looks Like | ::
#include <stdio.h>
#include <mpi.h> If number of

| o processes=4
int main(int argc, char =*argvl[])

{ ‘ ‘ 2) ¢
MP| _Init(&argc, &argv);<€ Initialize MPI

(Computation/communication)

MP|_Finalize(); & Finalize MPI
1
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ID of Each MPI Process

e Each process has its ID (0, 1, 2...), called rank
o MPI_Comm_rank(MP|_COMM_WORLD, &rank);
- Get its rank
o MPI_Comm_size(MPI|_COMM_WORLD, &size):;
- Get the number of total processes
e 0 = rank < size
o The rank is used as target of message passing

rank=0 rank=1 rank=2 rank=3

Qe | ®

\ )
|

size=4
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“mm” sample: Matrix Multiply

MPI version available at /gs/hs1/tga-ppcomp/20/mm-mpi/

A: a (m X k) matrix, B: a (k X n) matrix

C: a (m X n) matrix c B
C—AXB }
e Algorithm with a triple for loop 1 m\»
e Supports variable matrix size. || A C
e Each matrix is expressed as a 1D
array by column-major format e
n

Execution:
mpirun -n [np] -npernode [nn] ./mm [m] [n] [K]
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Why Distributed Programming is
More Difficult (case of mm-mpi)

Shared memory with OpenMP:

Programmers consider how
computations are divided

5 5
\\/~

NEl
In this case, matrix A is accessed
by all threads

- Programmers do not have to
know that

Distributed memory with MPI:
Programmers consider how data and
computations are divided

3 =2
I I I

- B, B,

Allc] (I A 1S

Programmers have to design
which data is accessed by
each process
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Programming Data Distribution

(case of mm-mpi)

Design distributio

method:

Programming actual location:

3

| will divide B, C
vertically.
| will put replicas of
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Programming Actual Data
Distribution

e We want to distribute a m xn
matrix among p processes

Entire matrix

A
o We assume n is divisible by p
e Each process has a partial m
matrix of size m X (n/p) \’
e We need to "malloc” < n >
m*(n/p)“sizeof(data-type) size Actual matrix
o We need to be aware of relation per process
between partial matrix and entire (0.0)———pp—
matrix local index
(i,j) element in partial matrix m
owned by Process r &
(i, n/p*r + j) element in entire M 19

matrix \ global index n/p



What is Done for Indivisible Cases

e \What if data size n is indivisible by p?
e We let n=11, p=4

e How many data each process take?

e n/p =2is not good (C division uses round down). Instead, we
should use round up division

> (n+p-1)/p = 3 works well
Note that the “final” process takes less than others

<>

(n+p-1)/p
See divide length() function in mm-mpi/mm.c
It calculates the range the process should take
(first index s and last index e)
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Notes in Time Measurement

e In mm-mpi, gettimeofday() is used for time measurement

e For accurate measurement, we should call
MPI_Barrier(MPI_COMM_ WORLD) before measurement
e This synchronizes all processes
e All processes need to call this



Shared Memory Model and e
Distributed Memory Model

Shared Memory Distributed Memory

RF 29 9

e In distributed memory model, a process CANNOT
read/write other processes’ memory directory

e How can a process access data, computed by others?
- Message passing (communication) is requried
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Basics of Message Passing:

Peer-to-peer Communication
Example at: /gs/hs1/tga-ppcomp/20/test-mpi/  rank 0  rank 1

Execute: mpiexec -n 2 ./test ,@ ,@
|

Rank 0 computes “int a[16]”
Rank 1 wants to see contents of al MP| ¢

RankO:
e Computes data of a

e Send data of a to rankf
Rank1:
e Prepares a memory region (b here)

e Receive data from rankO and store it
to b

e Now b has copy of a'! \%




MPI_Send %

MPI_Send(a, 16, MPI_INT, 1, 100, MPI_COMM_WORLD);
e a: Address of memory region to be sent
e 16: Number of data to be sent

e MPI INT: Data type of each element
e MPI_CHAR, MPI_LONG. MPI_DOUBLE, MPI BYTE""-

e 1: Destination process of the message
e 100: An integer tag for this message (explained later)
e MPI COMM_WORLD: Commumcator (explained later)

f“ source: O i
® dest: 1

(tag: 100 _| )



MPI| _Recv

MP|_Status stat;
MP|_Recv(b, 16, MPI_INT, O, 100, MPI|_COMM_WORLD, &stat);

b: Address of memory region to store incoming message
16: Number of data to be received

MPI_INT: Data type of each element

0: Source process of the message

100: An integer tag for a message to be received
e Should be same as one in MPI_Send

MPI_COMM_WORLD: Communicator (explained later)
&stat: Some information on the message is stored

Note: MPI_Recv does not return until the message arrives
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Notes on MPI Recyv:
Message Matching (1)

MP1_Recv(b, 16, MPI_INT, 2, 200, MPI_COMM_WORLD, &stat);

«  source:?
- -.'a-_:.' deSt : -] : I’ank 2

P tag:200 | @

[I only want a message with tag 200 from 2! ]

* Receiver specifies “source” and “tag” that it wants to receive
- The message that matches the condition is delivered
« Other messages should be received by other MPI_Recv calls
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Notes on MPI Recyv:
Message Matching (2)

e In some algorithms, the sender may not be known beforehand

o cf) client-server model

e Forsuch cases, MPI ANY SOURCE / MPI _ANY TAG can be used

MP|_Status stat;

®\ ...data...

Any message
IS welcome!

MP|_Recv(b, 16, MPI_INT, MP|_ANY_SOURCE, MPI|_ANY_TAG,
MP|_COMM_WORLD, &stat);
source: 1 source: 2
tag: 100 tag:200

4

...data...

&

After receipt, receiver can
see stat. MPI_SOURCE ancg7
stat. MPl_TAG



Assignments in this Course

e There is homework for each part. Submissions of reports
for 2 parts are required

- T —— N T
Part 1 121 diusion | - sefect
OpenMP i~ 1 problem
S P O3] free § y
2 11 difusion - ~
Part2  [G1]dittusion Select Select
GPU [G2]mm = 1 problem | [~ 2 parts
L (G3] free i )
e Y ETIET— N
Part 3 :m;: ?Afrfrlljs'on Select
MPI M3 free 1 problem
- - - y,




Assignments in MPI Part (1)

Choose one of [M1]—[M3], and submit a report
Due date: 11AM, June 29 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.

e Do not forget to change Makefile and job.sh appropriately
e Use deadlock-free communication
see neicomm_safe() in neicomm-mpi sample

Optional:
e To make array sizes (NX, NY) variable parameters
e To consider the case with NY is indivisible by p
see divide_length() in mm_mpi sample
e To improve performance further. Blocking, 2D division, etc ~ *



Assignments in MPI Part(2)

[IM2] Improve “mm-mpi” sample in order to reduce
memory consumption

Optional:
To consider indivisible cases

To try advanced algorithms, such as SUMMA

the paper “SUMMA: Scalable Universal Matrix
Multiplication Algorithm” by Van de Geijn
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http://www.netlib.org/lapack/lawnspdf/lawn96.pdf

Assignments in MPI Part (3)

[IM3] (Freestyle) Parallelize any program by MPI.

o cf) A problem related to your research
e More challenging one for parallelization is better
cf) Partial computations have dependency with each other
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Notes in Report Submission (1)

e Submit the followings via OCW-i

(1) A report document
PDF, MS-Word or text file

2 pages or more

in English or Japanese (H A&+ 0k)
(2) Source code files of your program
o Try “zip” to submit multiple files
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Notes in Report Submission (2)

The report document should include:
e Which problem you have chosen
e How you parallelized

It is even better if you mention efforts for high performance or
new functions

e Performance evaluation on TSUBAME

With varying number of processes
Either is ok

Using up to 7 processes on an interactive node
Using qsub (=2nodes)
Using gsub (>2nodes)

With varying problem sizes
Discussion with your findings

Other machines than TSUBAME are ok, if available 33



Next Class
e MPI (2)

How to parallelize diffusion sample with MPI
e Class Evaluation (2% 7>45—F)

34
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