Practical Parallel Computing

(EERMAEFH A E1—T12))

Part3: MPI (1)
June 11, 2020

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Overview of This Course °

e Part O: Introduction
e 2 classes

e Part 1. OpenMP for shared memory programming
e 4 classes

e Part 2: GPU programming
e 4 classes € We are here (1/4)
e OpenACC (1.5 classes) and CUDA (2.5 classes)

e Part 3: MPI for distributed memory programming
e 3 classes € We are here (1/3)

Parallel Programming Methods | ::::

on TSUBAME .
OpenACC/CUDA

/ Node Node Node

| |
GPU , GPU

{| cru
1 EIOO0
1|e o0e

How We Can Use Many Nodes

1. Submit several jobs into job scheduler

e cf) Program executions with different parameters -
Parameter Sweep

e Jobs are dependent, and no cooperation

compute node

2. Use distributed memory programming > A single job
can use multiple nodes

e Socket programming, Hadoop, Spark...
e And MPI

Classification of Parallel 3
Programming Models "
S tial Shared memory Distributed memory
squentia prog. model prog. model
T 1 1 1

5’%‘?2233’% S35 35553

= = 11

Programming Threads have access Need communication

without to shared data among processes
parallelsim * OpenMP * MPI
* pthread socket

 Java thread... * Hadoop, Spark...

5

MPI (message-passing t
interface)

e Parallel programming interface based on
distributed memory model

e Used by C, C++, Fortran programs
Programs call MPI library functions, for message
passing etc.

e There are several MPI libraries
OpenMPI (default) < OpenMPI # OpenMP ®
Intel MPI, SGI MPE, MVAPICH, MPICH...

Differences from OpenMP

In MPI,

e An execution consists of multiple processes (not threads)
e We can use multiple nodes ©
e The number of running processes is basically constant

e No variables are shared. Instead message passing is used
e Data distribution has to be programmed

e No smart syntaxes such as “omp for” or “omp task” ®
o Task distribution has to be programmed ®

First MPlI Sample

e /gs/hs1/tga-ppcomp/20/hello-mpi

module load cuda openmpi
cd ~/t3workspace

cd hello-mpi
make

mpiexec -n 7 ./hello

cp -r /gs/hs1/tga-ppcomp/20/hello-mpi .

Compiling and Executing HE
MPI Programs -

Case of OpenMPI library on TSUBAME3.0

e [0 compile Required for module dependency®

e module load cuda openmpi, and then use mpicc
e For sample programs, “make” command works

e Toexecute __—~Number of processes
e mpiexec -n 7 ./hello

e ./hello € only 1 process is used

T These methods uses 1 (current) node. For multi-nodes, we need
“job submission

N ote s o n Account crestion
oo | in TSUBAME porial
[Standard route T

| Windowsa] Instal 1erminal apo | | WEh'Dnl}r route | .

“Standard route” g

| Login ‘{“ 'f‘” W\ (blogine |
| |

<.
| Start "web service® |

Le=g-in t interactive node

>4

e On an interactive node via “standard route”, qsub/qgstat
commands are not found

e Please use
e (grsh -q interactive -l h_rt=2:00:00 -v PATH
instead of qrsh -q interactive -l h_rt=2:00:00

e By doing that, PATH environment variable on login node is
passed to interactive node

10

Submit an MPI Job

(case of OpenMPI)

e \We are going to execute it with 4 processes X 2 nodes =

8 processes
(1) Make a script file: job.sh

#!/bin/sh
/ 4core node x 2

#3$ -cwd
#$ -1 g_core=2
#$ -l h_rt=00:10:00

. letc/profile.d/modules.sh Module
module load cuda openmpi

mpiexec - 8 —npernodg 4 ./hello

Number of
processes

/ / \

Number of Program name
processes (and option)
per node

(2) Submit the job with “gsub”

gsub job.sh
(=0:10:00, =2node for free)

preparation qsub —g tga-ppcomp job.sh

(if you use the group)

11

Notes in This Lecture

e Usually, avoid consumption of TSUBAME points

o BEFEIEIWMHFIADELHEHICLLEHT LY
h_rt <=0:10:00

e If necessary for reports, you can use up to 72,000 points
In total per student

o KEHOLR—FDERICBDELBE . — ABIYBEHT
72,0004 M ETRIREROHET

f node x 1node x 20 hours

e Please check point consumption on TSUBAME portal
e The TSUBAME group name is tga-ppcomp

12

o @ H

Nodes, Cores, MPI Processes

#$ -l q_core=2 #$ -l s_core=8 #$ -l g_node=2

mpirun —n 8 —npernode 4 mpirun —n 8 —npernode 1 mpirun —n 11 —npernode 6

)
)

\
/

D)
020090°

A~ N
CD
» »
))

» -

0eee
@eee

2 (virtual) nodes are prepared 8 (virtual) nodes are prepared 2 (virtual) nodes are prepared
Each node has 4 cores (q_core) Each node has 1 cores (s_core) Each node has 7 cores (q_node)

4 processes are created per 1 processes are created per 6 processes are created per
node. Totally 8 are created node. Totally 8 are created node. Totally 11 are created
—> 2 nodes are used —> 8 nodes are used > 2 nodes are used

(There are idle cores) '3

An MPI Program Looks Like | ::
#include <stdio.h>
#include <mpi.h> If number of

| o processes=4
int main(int argc, char =*argvl[])

{ ‘ ‘ 2) ¢
MP| _Init(&argc, &argv);<€ Initialize MPI

(Computation/communication)

MP|_Finalize(); & Finalize MPI
1

14

ID of Each MPI Process

e Each process has its ID (0, 1, 2...), called rank
o MPI_Comm_rank(MP|_COMM_WORLD, &rank);
- Get its rank
o MPI_Comm_size(MPI|_COMM_WORLD, &size):;
- Get the number of total processes
e 0 = rank < size
o The rank is used as target of message passing

rank=0 rank=1 rank=2 rank=3

Qe | ®

\)
|

size=4

15

“mm” sample: Matrix Multiply

MPI version available at /gs/hs1/tga-ppcomp/20/mm-mpi/

A: a (m X k) matrix, B: a (k X n) matrix

C: a (m X n) matrix c B
C—AXB }
e Algorithm with a triple for loop 1 m\»
e Supports variable matrix size. || A C
e Each matrix is expressed as a 1D
array by column-major format e
n

Execution:
mpirun -n [np] -npernode [nn] ./mm [m] [n] [K]

16

Why Distributed Programming is
More Difficult (case of mm-mpi)

Shared memory with OpenMP:

Programmers consider how
computations are divided

5 5
\\/~

NEl
In this case, matrix A is accessed
by all threads

- Programmers do not have to
know that

Distributed memory with MPI:
Programmers consider how data and
computations are divided

3 =2
I I I

- B, B,

Allc] (I A 1S

Programmers have to design
which data is accessed by
each process

17

Programming Data Distribution

(case of mm-mpi)

Design distributio

method:

Programming actual location:

3

| will divide B, C
vertically.
| will put replicas of

18

Programming Actual Data
Distribution

e We want to distribute a m xn
matrix among p processes

Entire matrix

A
o We assume n is divisible by p
e Each process has a partial m
matrix of size m X (n/p) \’
e We need to "malloc” < n >
m*(n/p)“sizeof(data-type) size Actual matrix
o We need to be aware of relation per process
between partial matrix and entire (0.0)———pp—
matrix local index
(i,j) element in partial matrix m
owned by Process r &
(i, n/p*r + j) element in entire M 19

matrix \ global index n/p

What is Done for Indivisible Cases

e \What if data size n is indivisible by p?
e We let n=11, p=4

e How many data each process take?

e n/p =2is not good (C division uses round down). Instead, we
should use round up division

> (n+p-1)/p = 3 works well
Note that the “final” process takes less than others

<>

(n+p-1)/p
See divide length() function in mm-mpi/mm.c
It calculates the range the process should take
(first index s and last index e)

20

Notes in Time Measurement

e In mm-mpi, gettimeofday() is used for time measurement

e For accurate measurement, we should call
MPI_Barrier(MPI_COMM_ WORLD) before measurement
e This synchronizes all processes
e All processes need to call this

Shared Memory Model and e
Distributed Memory Model

Shared Memory Distributed Memory

RF 29 9

e In distributed memory model, a process CANNOT
read/write other processes’ memory directory

e How can a process access data, computed by others?
- Message passing (communication) is requried

22

Basics of Message Passing:

Peer-to-peer Communication
Example at: /gs/hs1/tga-ppcomp/20/test-mpi/ rank 0 rank 1

Execute: mpiexec -n 2 ./test ,@ ,@
|

Rank 0 computes “int a[16]”
Rank 1 wants to see contents of al MP| ¢

RankO:
e Computes data of a

e Send data of a to rankf
Rank1:
e Prepares a memory region (b here)

e Receive data from rankO and store it
to b

e Now b has copy of a'! \%

MPI_Send %

MPI_Send(a, 16, MPI_INT, 1, 100, MPI_COMM_WORLD);
e a: Address of memory region to be sent
e 16: Number of data to be sent

e MPI INT: Data type of each element
e MPI_CHAR, MPI_LONG. MPI_DOUBLE, MPI BYTE""-

e 1: Destination process of the message
e 100: An integer tag for this message (explained later)
e MPI COMM_WORLD: Commumcator (explained later)

f“ source: O i
® dest: 1

(tag: 100 _|)

MPI| _Recv

MP|_Status stat;
MP|_Recv(b, 16, MPI_INT, O, 100, MPI|_COMM_WORLD, &stat);

b: Address of memory region to store incoming message
16: Number of data to be received

MPI_INT: Data type of each element

0: Source process of the message

100: An integer tag for a message to be received
e Should be same as one in MPI_Send

MPI_COMM_WORLD: Communicator (explained later)
&stat: Some information on the message is stored

Note: MPI_Recv does not return until the message arrives

25

Notes on MPI Recyv:
Message Matching (1)

MP1_Recv(b, 16, MPI_INT, 2, 200, MPI_COMM_WORLD, &stat);

« source:?
- -.'a-_:.' deSt : -] : I’ank 2

P tag:200 | @

[I only want a message with tag 200 from 2!]

* Receiver specifies “source” and “tag” that it wants to receive
- The message that matches the condition is delivered
« Other messages should be received by other MPI_Recv calls

26

Notes on MPI Recyv:
Message Matching (2)

e In some algorithms, the sender may not be known beforehand

o cf) client-server model

e Forsuch cases, MPI ANY SOURCE / MPI _ANY TAG can be used

MP|_Status stat;

®\ ...data...

Any message
IS welcome!

MP|_Recv(b, 16, MPI_INT, MP|_ANY_SOURCE, MPI|_ANY_TAG,
MP|_COMM_WORLD, &stat);
source: 1 source: 2
tag: 100 tag:200

4

...data...

&

After receipt, receiver can
see stat. MPI_SOURCE ancg7
stat. MPl_TAG

Assignments in this Course

e There is homework for each part. Submissions of reports
for 2 parts are required

- T —— N T
Part 1 121 diusion | - sefect
OpenMP i~ 1 problem
S P O3] free § y
2 11 difusion - ~
Part2 [G1]dittusion Select Select
GPU [G2]mm = 1 problem | [~ 2 parts
L (G3] free i)
e Y ETIET— N
Part 3 :m;: ?Afrfrlljs'on Select
MPI M3 free 1 problem
- - - y,

Assignments in MPI Part (1)

Choose one of [M1]—[M3], and submit a report
Due date: 11AM, June 29 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.

e Do not forget to change Makefile and job.sh appropriately
e Use deadlock-free communication
see neicomm_safe() in neicomm-mpi sample

Optional:
e To make array sizes (NX, NY) variable parameters
e To consider the case with NY is indivisible by p
see divide_length() in mm_mpi sample
e To improve performance further. Blocking, 2D division, etc ~ *

Assignments in MPI Part(2)

[IM2] Improve “mm-mpi” sample in order to reduce
memory consumption

Optional:
To consider indivisible cases

To try advanced algorithms, such as SUMMA

the paper “SUMMA: Scalable Universal Matrix
Multiplication Algorithm” by Van de Geijn

30

http://www.netlib.org/lapack/lawnspdf/lawn96.pdf

Assignments in MPI Part (3)

[IM3] (Freestyle) Parallelize any program by MPI.

o cf) A problem related to your research
e More challenging one for parallelization is better
cf) Partial computations have dependency with each other

31

Notes in Report Submission (1)

e Submit the followings via OCW-i

(1) A report document
PDF, MS-Word or text file

2 pages or more

in English or Japanese (H A&+ 0k)
(2) Source code files of your program
o Try “zip” to submit multiple files

32

Notes in Report Submission (2)

The report document should include:
e Which problem you have chosen
e How you parallelized

It is even better if you mention efforts for high performance or
new functions

e Performance evaluation on TSUBAME

With varying number of processes
Either is ok

Using up to 7 processes on an interactive node
Using qsub (=2nodes)
Using gsub (>2nodes)

With varying problem sizes
Discussion with your findings

Other machines than TSUBAME are ok, if available 33

Next Class
e MPI (2)

How to parallelize diffusion sample with MPI
e Class Evaluation (2% 7>45—F)

34

	Practical Parallel Computing�(実践的並列コンピューティング)�
	Overview of This Course
	Parallel Programming Methods�on TSUBAME
	How We Can Use Many Nodes
	Classification of Parallel Programming Models
	MPI (message-passing interface)
	Differences from OpenMP
	First MPI Sample
	Compiling and Executing�MPI Programs
	Notes on �“Standard route”
	Submit an MPI Job�(case of OpenMPI)
	Notes in This Lecture
	���Nodes, Cores, MPI Processes
	An MPI Program Looks Like
	ID of Each MPI Process
	“mm” sample: Matrix Multiply
	Why Distributed Programming is More Difficult (case of mm-mpi)
	Programming Data Distribution�(case of mm-mpi)
	Programming Actual Data Distribution
	What is Done for Indivisible Cases
	Notes in Time Measurement
	Shared Memory Model and�Distributed Memory Model
	Basics of Message Passing:�Peer-to-peer Communication
	MPI_Send
	MPI_Recv
	Notes on MPI_Recv:�Message Matching (1)
	Notes on MPI_Recv:�Message Matching (2)
	Assignments in this Course
	Assignments in MPI Part (1)
	Assignments in MPI Part(2)
	Assignments in MPI Part (3)
	Notes in Report Submission (1)
	Notes in Report Submission (2)
	Next Class

