
1

Practical Parallel Computing
(実践的並列コンピューティング)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Part３: MPI (1)
June 11, 2020

Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming

 4 classes
 Part 2: GPU programming

 4 classes We are here (1/4)
 OpenACC (1.5 classes) and CUDA (2.5 classes)

 Part 3: MPI for distributed memory programming
 3 classes We are here (1/3)

2

Parallel Programming Methods
on TSUBAME

3

Node

Memory

GPU GPU GPU GPU

CPU CPU

Node

Memory

GPU GPU GPU GPU

CPU CPU

Node

Memory

GPU GPU GPU GPU

CPU CPU

MPI
OpenMP Sequential

OpenACC/CUDA

How We Can Use Many Nodes
1. Submit several jobs into job scheduler

 cf) Program executions with different parameters 
Parameter Sweep

 Jobs are dependent, and no cooperation

4

2. Use distributed memory programming  A single job
can use multiple nodes

 Socket programming, Hadoop, Spark…
 And MPI

compute node

5

Classification of Parallel
Programming Models

Sequential

Process/
Thread

Data

Shared memory
prog. model

Distributed memory
prog. model

Threads have access
to shared data
• OpenMP
• pthread
• Java thread…

Need communication
among processes
• MPI
• socket
• Hadoop, Spark…

Programming
without
parallelsim

6

MPI (message-passing
interface)
 Parallel programming interface based on

distributed memory model
 Used by C, C++, Fortran programs
 Programs call MPI library functions, for message

passing etc.
 There are several MPI libraries
 OpenMPI (default)  OpenMPI ≠ OpenMP 
 Intel MPI, SGI MPE, MVAPICH, MPICH…

Differences from OpenMP

In MPI,
 An execution consists of multiple processes (not threads)

 We can use multiple nodes 
 The number of running processes is basically constant

 No variables are shared. Instead message passing is used
 Data distribution has to be programmed

 No smart syntaxes such as “omp for” or “omp task” 
 Task distribution has to be programmed 

7

First MPI Sample

8

[make sure that you are at a interactive node (r7i7nX)]
module load cuda openmpi [Do once after login]
cd ~/t3workspace [Example in web-only route]
cp -r /gs/hs1/tga-ppcomp/20/hello-mpi .
cd hello-mpi
make
[An executable file “hello” is created]
mpiexec -n 7 ./hello

 /gs/hs1/tga-ppcomp/20/hello-mpi

9

Compiling and Executing
MPI Programs
Case of OpenMPI library on TSUBAME3.0

 To compile
 module load cuda openmpi, and then use mpicc
 For sample programs, “make” command works

 To execute
 mpiexec -n 7 ./hello
 ./hello  only 1 process is used
↑ These methods uses 1 (current) node. For multi-nodes, we need
“job submission

Number of processes

Required for module dependency

Notes on
“Standard route”

 On an interactive node via “standard route”, qsub/qstat
commands are not found

 Please use
 qrsh -q interactive -l h_rt=2:00:00 -v PATH
instead of qrsh -q interactive -l h_rt=2:00:00
 By doing that, PATH environment variable on login node is

passed to interactive node

10

11

Submit an MPI Job
(case of OpenMPI)

(1) Make a script file: job.sh
(2) Submit the job with “qsub”

qsub job.sh
(≦0:10:00, ≦2node for free)

qsub –g tga-ppcomp job.sh
(if you use the group)

 We are going to execute it with 4 processes × 2 nodes =
8 processes

Number of
processes
per node

#!/bin/sh
#$ -cwd
#$ -l q_core=2
#$ -l h_rt=00:10:00

. /etc/profile.d/modules.sh
module load cuda openmpi

mpiexec –n 8 –npernode 4 ./hello

Number of
processes

4core node x 2

Program name
(and option)

Module
preparation

Notes in This Lecture
 Usually, avoid consumption of TSUBAME points
 通常は無料利用の範囲にとどめてください

 h_rt <= 0:10:00

 If necessary for reports, you can use up to 72,000 points
in total per student

 本講義のレポートの作成に必要な場合、一人あたり合計で
72,000ポイントまで利用を認めます
 f_node x 1node x 20 hours

 Please check point consumption on TSUBAME portal
 The TSUBAME group name is tga-ppcomp

12

Nodes, Cores, MPI Processes

13

:
#$ -l q_core=2

:
mpirun –n 8 –npernode 4

…

2 (virtual) nodes are prepared
Each node has 4 cores (q_core)

4 processes are created per
node. Totally 8 are created
 2 nodes are used

:
#$ -l s_core=8

:
mpirun –n 8 –npernode 1

…

8 (virtual) nodes are prepared
Each node has 1 cores (s_core)

1 processes are created per
node. Totally 8 are created
 8 nodes are used

:
#$ -l q_node=2

:
mpirun –n 11 –npernode 6

…

2 (virtual) nodes are prepared
Each node has 7 cores (q_node)

6 processes are created per
node. Totally 11 are created
 2 nodes are used
(There are idle cores)

14

An MPI Program Looks Like
#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

(Computation/communication)

MPI_Finalize();

}

 Initialize MPI

 Finalize MPI

If number of
processes=4

15

ID of Each MPI Process
 Each process has its ID (0, 1, 2…), called rank
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 Get its rank
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 Get the number of total processes
 0 ≦ rank < size
 The rank is used as target of message passing

rank=0 rank=1 rank=2 rank=3

size=4

16

“mm” sample: Matrix Multiply

A: a (m×k) matrix, B: a (k×n) matrix
C: a (m×n) matrix

C ← A × B
 Algorithm with a triple for loop
 Supports variable matrix size.
 Each matrix is expressed as a 1D

array by column-major format

CA

B

m

k

k

n

MPI version available at /gs/hs1/tga-ppcomp/20/mm-mpi/

Execution:
mpirun -n [np] -npernode [nn] ./mm [m] [n] [k]

17

Why Distributed Programming is
More Difficult (case of mm-mpi)

Shared memory with OpenMP:
Programmers consider how
computations are divided

A

B

C A

B0

A

Distributed memory with MPI:
Programmers consider how data and
computations are divided

In this case, matrix A is accessed
by all threads
 Programmers do not have to
know that

Programmers have to design
which data is accessed by
each process

C0

B1

C1 A

B2

C2

18

Programming Data Distribution
(case of mm-mpi)

A

B0

AC0

B1

C1 A

B2

C2 A

B3

C3

A

B

C

Design distribution
method:

I will divide B, C
vertically.
I will put replicas of
A on every process...

Programming actual location:

19

Programming Actual Data
Distribution
 We want to distribute a m×n

matrix among p processes
 We assume n is divisible by p

 Each process has a partial
matrix of size m×(n/p)
 We need to “malloc”

m*(n/p)*sizeof(data-type) size
 We need to be aware of relation

between partial matrix and entire
matrix
 (i,j) element in partial matrix

owned by Process r ⇔
(i, n/p*r + j) element in entire

matrix

Entire matrix

m

n
Actual matrix
per process

m

n/p

(0,0)

local index

global index

20

What is Done for Indivisible Cases
 What if data size n is indivisible by p?
 We let n=11, p=4
 How many data each process take?
 n/p = 2 is not good (C division uses round down). Instead, we

should use round up division
 (n+p-1)/p = 3 works well
Note that the “final” process takes less than others

(n+p-1)/p
See divide_length() function in mm-mpi/mm.c
It calculates the range the process should take
(first index s and last index e)

Notes in Time Measurement

 In mm-mpi, gettimeofday() is used for time measurement
 For accurate measurement, we should call

MPI_Barrier(MPI_COMM_WORLD) before measurement
 This synchronizes all processes
 All processes need to call this

Shared Memory Model and
Distributed Memory Model

 In distributed memory model, a process CANNOT
read/write other processes’ memory directory

 How can a process access data, computed by others?
 Message passing (communication) is requried 22

Shared Memory Distributed Memory

23

Basics of Message Passing:
Peer-to-peer Communication

Example at: /gs/hs1/tga-ppcomp/20/test-mpi/
Execute: mpiexec -n 2 ./test

Rank 0 computes “int a[16]”
Rank 1 wants to see contents of a!

Rank0:
 Computes data of a
 Send data of a to rank1

Rank1:
 Prepares a memory region (b here)
 Receive data from rank0 and store it

to b

 Now b has copy of a !

rank 0 rank 1

MPI_Send()

MPI_Recv()

b

24

MPI_Send
MPI_Send(a, 16, MPI_INT, 1, 100, MPI_COMM_WORLD);

 a: Address of memory region to be sent
 16: Number of data to be sent
 MPI_INT: Data type of each element
 MPI_CHAR, MPI_LONG. MPI_DOUBLE, MPI_BYTE・・・

 1: Destination process of the message
 100: An integer tag for this message (explained later)
 MPI_COMM_WORLD: Communicator (explained later)

rank 0 source:0
dest: 1
tag:100

25

MPI_Recv
MPI_Status stat;

MPI_Recv(b, 16, MPI_INT, 0, 100, MPI_COMM_WORLD, &stat);

 b: Address of memory region to store incoming message
 16: Number of data to be received
 MPI_INT: Data type of each element
 0: Source process of the message
 100: An integer tag for a message to be received

 Should be same as one in MPI_Send
 MPI_COMM_WORLD: Communicator (explained later)
 &stat: Some information on the message is stored

Note: MPI_Recv does not return until the message arrives

26

Notes on MPI_Recv:
Message Matching (1)

MPI_Recv(b, 16, MPI_INT, 2, 200, MPI_COMM_WORLD, &stat);

I only want a message with tag 200 from 2 !

• Receiver specifies “source” and “tag” that it wants to receive
 The message that matches the condition is delivered
• Other messages should be received by other MPI_Recv calls

source:0
dest:1
tag:100

source:2
dest:1
tag:200

rank 0

rank 1

rank 2

Notes on MPI_Recv:
Message Matching (2)

 In some algorithms, the sender may not be known beforehand
 cf) client-server model

 For such cases, MPI_ANY_SOURCE / MPI_ANY_TAG can be used

27

MPI_Status stat;

MPI_Recv(b, 16, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &stat);

1

0

source:1
tag:100

…data…

source:2
tag:200

…data…

Any message
is welcome!

After receipt, receiver can
see stat.MPI_SOURCE and
stat.MPI_TAG

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required

28

Part 1
OpenMP

Part 3
MPI

Part 2
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1] diffusion
[M2] mm
[M3] free

[G1] diffusion
[G2] mm
[G3] free

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

29

Assignments in MPI Part (1)
Choose one of [M1]—[M3], and submit a report
Due date: 11AM, June 29 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.
 Do not forget to change Makefile and job.sh appropriately
 Use deadlock-free communication

 see neicomm_safe() in neicomm-mpi sample

Optional：
 To make array sizes (NX, NY) variable parameters
 To consider the case with NY is indivisible by p

 see divide_length() in mm_mpi sample
 To improve performance further. Blocking, 2D division, etc

30

Assignments in MPI Part(2)
[M2] Improve “mm-mpi” sample in order to reduce

memory consumption

Optional:
 To consider indivisible cases
 To try advanced algorithms, such as SUMMA
 the paper “SUMMA: Scalable Universal Matrix

Multiplication Algorithm” by Van de Geijn
 http://www.netlib.org/lapack/lawnspdf/lawn96.pdf

http://www.netlib.org/lapack/lawnspdf/lawn96.pdf

31

Assignments in MPI Part (3)
[M3] (Freestyle) Parallelize any program by MPI.

 cf) A problem related to your research
 More challenging one for parallelization is better

 cf) Partial computations have dependency with each other

32

Notes in Report Submission (1)

 Submit the followings via OCW-i
(1) A report document

 PDF, MS-Word or text file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 Try “zip” to submit multiple files

33

Notes in Report Submission (2)
The report document should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or
new functions

 Performance evaluation on TSUBAME
 With varying number of processes

Either is ok
 Using up to 7 processes on an interactive node
 Using qsub (≦2nodes)
 Using qsub (>2nodes)

 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

34

Next Class
 MPI (2)
 How to parallelize diffusion sample with MPI

 Class Evaluation (授業アンケート)

	Practical Parallel Computing�(実践的並列コンピューティング)�
	Overview of This Course
	Parallel Programming Methods�on TSUBAME
	How We Can Use Many Nodes
	Classification of Parallel Programming Models
	MPI (message-passing interface)
	Differences from OpenMP
	First MPI Sample
	Compiling and Executing�MPI Programs
	Notes on �“Standard route”
	Submit an MPI Job�(case of OpenMPI)
	Notes in This Lecture
	���Nodes, Cores, MPI Processes
	An MPI Program Looks Like
	ID of Each MPI Process
	“mm” sample: Matrix Multiply
	Why Distributed Programming is More Difficult (case of mm-mpi)
	Programming Data Distribution�(case of mm-mpi)
	Programming Actual Data Distribution
	What is Done for Indivisible Cases
	Notes in Time Measurement
	Shared Memory Model and�Distributed Memory Model
	Basics of Message Passing:�Peer-to-peer Communication
	MPI_Send
	MPI_Recv
	Notes on MPI_Recv:�Message Matching (1)
	Notes on MPI_Recv:�Message Matching (2)
	Assignments in this Course
	Assignments in MPI Part (1)
	Assignments in MPI Part(2)
	Assignments in MPI Part (3)
	Notes in Report Submission (1)
	Notes in Report Submission (2)
	Next Class

