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Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming 

 4 classes
 Part 2: GPU programming

 4 classes We are here (1/4)
 OpenACC (1.5 classes) and CUDA (2.5 classes)

 Part 3: MPI for distributed memory programming
 3 classes We are here (1/3)
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Parallel Programming Methods
on TSUBAME
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How We Can Use Many Nodes
1. Submit several jobs into job scheduler

 cf) Program executions with different parameters 
Parameter Sweep

 Jobs are dependent, and no cooperation
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2. Use distributed memory programming  A single job 
can use multiple nodes

 Socket programming, Hadoop, Spark…
 And MPI

compute node
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Classification of Parallel 
Programming Models

Sequential

Process/
Thread

Data

Shared memory
prog. model

Distributed memory
prog. model

Threads have access
to shared data
• OpenMP
• pthread
• Java thread…

Need communication
among processes
• MPI
• socket
• Hadoop, Spark…

Programming 
without 
parallelsim
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MPI (message-passing 
interface)
 Parallel programming interface based on 

distributed memory model
 Used by C, C++, Fortran programs
 Programs call MPI library functions, for message 

passing etc.
 There are several MPI libraries
 OpenMPI (default)      OpenMPI ≠ OpenMP 
 Intel MPI, SGI MPE, MVAPICH, MPICH…



Differences from OpenMP

In MPI,
 An execution consists of multiple processes (not threads)

 We can use multiple nodes 
 The number of running processes is basically constant

 No variables are shared. Instead message passing is used
 Data distribution has to be programmed

 No smart syntaxes such as “omp for” or “omp task” 
 Task distribution has to be programmed 
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First MPI Sample
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[make sure that you are at a interactive node (r7i7nX) ]
module load cuda openmpi [Do once after login]
cd ~/t3workspace    [Example in web-only route]
cp -r /gs/hs1/tga-ppcomp/20/hello-mpi .
cd hello-mpi
make
[An executable file “hello” is created]
mpiexec -n 7 ./hello

 /gs/hs1/tga-ppcomp/20/hello-mpi
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Compiling and Executing
MPI Programs
Case of OpenMPI library on TSUBAME3.0

 To compile
 module load cuda openmpi, and then use mpicc
 For sample programs, “make” command works

 To execute
 mpiexec -n 7 ./hello
 ./hello  only 1 process is used
↑ These methods uses 1 (current) node. For multi-nodes, we need 
“job submission

Number of processes

Required for module dependency



Notes on 
“Standard route”

 On an interactive node via “standard route”, qsub/qstat 
commands are not found

 Please use
 qrsh -q interactive -l h_rt=2:00:00 -v PATH
instead of qrsh -q interactive -l h_rt=2:00:00
 By doing that, PATH environment variable on login node is 

passed to interactive node
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Submit an MPI Job
(case of OpenMPI)

(1) Make a script file: job.sh
(2) Submit the job with “qsub”

qsub job.sh
(≦0:10:00, ≦2node for free)

qsub –g tga-ppcomp job.sh
(if you use the group)

 We are going to execute it with 4 processes × 2 nodes = 
8 processes

Number of 
processes
per node

#!/bin/sh
#$ -cwd
#$ -l q_core=2
#$ -l h_rt=00:10:00

. /etc/profile.d/modules.sh
module load cuda openmpi

mpiexec –n 8 –npernode 4 ./hello

Number of 
processes

4core node x 2

Program name
(and option)

Module
preparation



Notes in This Lecture
 Usually, avoid consumption of TSUBAME points
 通常は無料利用の範囲にとどめてください

 h_rt <= 0:10:00

 If necessary for reports, you can use up to 72,000 points 
in total per student

 本講義のレポートの作成に必要な場合、一人あたり合計で
72,000ポイントまで利用を認めます
 f_node x 1node x 20 hours

 Please check point consumption on TSUBAME portal
 The TSUBAME group name is tga-ppcomp
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Nodes, Cores, MPI Processes

13

:
#$ -l q_core=2

:
mpirun –n 8 –npernode 4 

…

2 (virtual) nodes are prepared
Each node has 4 cores (q_core)

4 processes are created per
node. Totally 8 are created
 2 nodes are used

:
#$ -l s_core=8

:
mpirun –n 8 –npernode 1 

…

8 (virtual) nodes are prepared
Each node has 1 cores (s_core)

1 processes are created per
node. Totally 8 are created
 8 nodes are used

:
#$ -l q_node=2

:
mpirun –n 11 –npernode 6 

…

2 (virtual) nodes are prepared
Each node has 7 cores (q_node)

6 processes are created per
node. Totally 11 are created
 2 nodes are used
(There are idle cores)



14

An MPI Program Looks Like
#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

(Computation/communication)

MPI_Finalize();

}

 Initialize MPI

 Finalize MPI

If number of
processes=4
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ID of Each MPI Process
 Each process has its ID (0, 1, 2…), called rank
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 Get its rank
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 Get the number of total processes
 0 ≦ rank < size
 The rank is used as target of message passing

rank=0 rank=1 rank=2 rank=3

size=4
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“mm” sample: Matrix Multiply

A: a (m×k) matrix, B: a (k×n) matrix
C: a (m×n) matrix

C ← A × B
 Algorithm with a triple for loop
 Supports variable matrix size. 
 Each matrix is expressed as a 1D 

array by column-major format

CA

B

m

k

k

n

MPI version available at /gs/hs1/tga-ppcomp/20/mm-mpi/

Execution: 
mpirun -n [np] -npernode [nn] ./mm [m] [n] [k]
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Why Distributed Programming is 
More Difficult (case of mm-mpi)

Shared memory with OpenMP:
Programmers consider how 
computations are divided

A

B

C A

B0

A

Distributed memory with MPI: 
Programmers consider how data and 
computations are divided

In this case, matrix A is accessed 
by all threads
 Programmers do not have to 
know that

Programmers have to design
which data is accessed by
each process

C0

B1

C1 A

B2

C2
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Programming Data Distribution
(case of mm-mpi)

A

B0

AC0

B1

C1 A

B2

C2 A

B3

C3

A

B

C

Design distribution
method:

I will divide B, C 
vertically.
I will put replicas of
A on every process...

Programming actual location:
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Programming Actual Data 
Distribution
 We want to distribute a m×n

matrix among p processes
 We assume n is divisible by p

 Each process has a partial 
matrix of size m×(n/p)
 We need to “malloc” 

m*(n/p)*sizeof(data-type) size
 We need to be aware of relation 

between partial matrix and entire 
matrix
 (i,j) element in partial matrix 

owned by Process r ⇔
(i, n/p*r + j) element in entire 

matrix

Entire matrix

m

n
Actual matrix 
per process

m

n/p

(0,0)

local index

global index
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What is Done for Indivisible Cases
 What if data size n is indivisible by p?
 We let n=11, p=4
 How many data each process take?
 n/p = 2 is not good (C division uses round down). Instead, we 

should use round up division
 (n+p-1)/p = 3 works well
Note that the “final” process takes less than others

(n+p-1)/p
See divide_length() function in mm-mpi/mm.c
It calculates the range the process should take
(first index s and last index e)



Notes in Time Measurement

 In mm-mpi, gettimeofday() is used for time measurement
 For accurate measurement, we should call 

MPI_Barrier(MPI_COMM_WORLD) before measurement
 This synchronizes all processes
 All processes need to call this



Shared Memory Model and
Distributed Memory Model

 In distributed memory model, a process CANNOT 
read/write other processes’ memory directory

 How can a process access data, computed by others?
 Message passing (communication) is requried 22

Shared Memory Distributed Memory
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Basics of Message Passing:
Peer-to-peer Communication

Example at: /gs/hs1/tga-ppcomp/20/test-mpi/
Execute: mpiexec -n 2 ./test

Rank 0 computes “int a[16]” 
Rank 1 wants to see contents of a!

Rank0:
 Computes data of a
 Send data of a to rank1

Rank1:
 Prepares a memory region (b here)
 Receive data from rank0 and store it 

to b

 Now b has copy of a !

rank 0 rank 1

MPI_Send()

MPI_Recv()

b
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MPI_Send
MPI_Send(a, 16, MPI_INT, 1, 100, MPI_COMM_WORLD);

 a: Address of memory region to be sent
 16: Number of data to be sent
 MPI_INT: Data type of each element
 MPI_CHAR, MPI_LONG. MPI_DOUBLE, MPI_BYTE・・・

 1: Destination process of the message
 100: An integer tag for this message (explained later)
 MPI_COMM_WORLD: Communicator (explained later)

rank 0 source:0
dest: 1
tag:100
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MPI_Recv
MPI_Status stat;

MPI_Recv(b, 16, MPI_INT, 0, 100, MPI_COMM_WORLD, &stat);

 b: Address of memory region to store incoming message
 16: Number of data to be received
 MPI_INT: Data type of each element
 0: Source process of the message
 100: An integer tag for a message to be received

 Should be same as one in MPI_Send
 MPI_COMM_WORLD: Communicator (explained later)
 &stat: Some information on the message is stored

Note: MPI_Recv does not return until the message arrives
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Notes on MPI_Recv:
Message Matching (1)

MPI_Recv(b, 16, MPI_INT, 2, 200, MPI_COMM_WORLD, &stat);

I only want a message with tag 200 from 2 !

• Receiver specifies “source” and “tag” that it wants to receive
 The message that matches the condition is delivered
• Other messages should be received by other MPI_Recv calls

source:0
dest:1
tag:100

source:2
dest:1
tag:200

rank 0

rank 1

rank 2



Notes on MPI_Recv:
Message Matching (2)

 In some algorithms, the sender may not be known beforehand
 cf) client-server model

 For such cases, MPI_ANY_SOURCE / MPI_ANY_TAG can be used
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MPI_Status stat;

MPI_Recv(b, 16, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, 
MPI_COMM_WORLD, &stat);

1

0

source:1
tag:100

…data…

source:2
tag:200

…data…

Any message
is  welcome!

After receipt, receiver can
see stat.MPI_SOURCE and
stat.MPI_TAG



Assignments in this Course
 There is homework for each part. Submissions of reports 
for 2 parts are required
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Part 1
OpenMP

Part 3
MPI

Part 2
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1] diffusion 
[M2] mm
[M3] free

[G1] diffusion 
[G2] mm
[G3] free

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem



29

Assignments in MPI Part (1)
Choose one of [M1]—[M3], and submit a report
Due date: 11AM, June 29 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.
 Do not forget to change Makefile and job.sh appropriately
 Use deadlock-free communication

 see neicomm_safe() in neicomm-mpi sample

Optional：
 To make array sizes (NX, NY) variable parameters
 To consider the case with NY is indivisible by p 

 see divide_length() in mm_mpi sample
 To improve performance further. Blocking, 2D division, etc
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Assignments in MPI Part(2)
[M2] Improve “mm-mpi” sample in order to reduce 

memory consumption

Optional:
 To consider indivisible cases
 To try advanced algorithms, such as SUMMA 
 the paper “SUMMA: Scalable Universal Matrix 

Multiplication Algorithm” by Van de Geijn
 http://www.netlib.org/lapack/lawnspdf/lawn96.pdf

http://www.netlib.org/lapack/lawnspdf/lawn96.pdf
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Assignments in MPI Part (3)
[M3] (Freestyle) Parallelize any program by MPI.

 cf) A problem related to your research
 More challenging one for parallelization is better

 cf) Partial computations have dependency with each other
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Notes in Report Submission (1)

 Submit the followings via OCW-i
(1) A report document

 PDF, MS-Word or text file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 Try “zip” to submit multiple files
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Notes in Report Submission (2)
The report document should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or 
new functions

 Performance evaluation on TSUBAME
 With varying number of processes

Either is ok
 Using up to 7 processes on an interactive node
 Using qsub (≦2nodes)
 Using qsub (>2nodes) 

 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available
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Next Class
 MPI (2)
 How to parallelize diffusion sample with MPI

 Class Evaluation (授業アンケート)
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