Practical Parallel Computing

(EERMAEFH A E1—T12))

Part2: GPU (3)
June 4, 2020

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Overview of This Course °

e Part O: Introduction
e 2 classes

e Part 1. OpenMP for shared memory programming
e 4 classes

e Part 2: GPU programming
e 4 classes € We are here (3/4)
e OpenACC (1.5 classes) and CUDA (2.5 classes)

e Part 3: MPI for distributed memory programming
e 3 classes

00
. 0000
Comparing OpenMP/OpenACC/CUDA | 22:°
OpenACC
Processors CPU CPU+GPU
File extension .C, .CC .CU
To start parallel #pragma omp #pragma acc kernels func<<<..., ...>>>()
(GPU) region parallel
To specify # of export OMP_NUM (num_gangs,
threads _THREADS-=... vector_length etc)
Desirable # of # of CPU cores or # of GPU cores or “more”
threads less
To get thread ID omp_thread_num() - blockldx, threadldx
Parallel for loop #pragma omp for #pragma acc loop -
Task parallel #pragma omp task - -
To allocate device - #pragma acc data cudaMalloc()
memory
To copy to/from - #pragma acc data cudaMemcpy()
device memory #pragma acc update
Function on GPU - #pragma acc routine | _ global , device

3

> “# of XXX” = “The number of XXX”

Calling A GPU Kernel Function
from CPU

e A region executed by GPU must be a distinct function
o called a GPU kernel function

[CPU side] call [GPU side]
func<<<20, 5>>>(...); _global__ void func(--)
// T ’ {
of thread blocks / :
of threads per block retu > return;
In this case, 20x5=100 }

threads run on GPU

Threads in CUDA 13

Specify 2 numbers (at least) for number of threads, when

calling a GPU kernel function

/
A grid A thread block A thread
cf)func<<< 4, 3 >>>(); = 12 threads
e AN
Number of thread blocks ~ Number of threads per block
= gridDim = blockDim

The reason is related to GPU hardware
Thread block & SMX, Thread <& CUDA core 5

To See Who am |

e By reading the following special variables, each thread
can see its thread ID in GPU kernel function

e My ID
blockldx.x: Index of the block the thread belong to (
threadldx.x: Index of the thread (inside the block) (

e Number of thread/blocks
gridDim.x: How many blocks are running
blockDim.x: How many threads (per block) are running

1Y%

0)
0)

1Y%

Thread Block ID, Thread ID
(blockldx.x = 1] blockldx.x = 2 J
threadldx.x =0 threadldx.x = 2
|\
(298|eaalegsd @@@\
blockldx.x = Of { blockidx.x = 1} { lockldx.x = 2 <\»ck|dx X =
O I\ VAN AN //
/
A grid \ \
A thread block A thread

For every thread, gridDim.x = 4, blockDim.x = 3

Note: In order to see the entire sequential ID, we should compute
blockldx.x * blockDim.x + threadldx.x

How Number of Threads is
Designed? (1)

On CUDA, Different strategy is required from on OpenMP

eOn OpenMP, number of threads (OMP_NUM_THREADS)
should be = CPU cores

e The number is basically determined by hardware

e =7 ong_node node, =28 onf node

eOn CUDA, it is better to use number of thread = GPU
cores

e = 3584 on TSUBAME3’s P100 GPU

e You can use >1,000,000 threads!

How Number of Threads is
Designed? (2)

We have to deicide 2 numbers
<<<block number, block size>>>

A better way would be
(1We decide total number of threads P

2)We tune each block size BS
e Good candidates are 16, 32, 64, ... 1024

3)Then block number is P/BS ”

e We consider indivisible cases later

“mm” sample: Matrix Multiply
(related to [G2])

CUDA versions are at
/gs/hs1/tga-ppcomp/20/mm-v1-cuda/
/gs/hs1/tga-ppcomp/20/mm-cuda/

A: a (m X k) matrix, B: a (k X n) matrix k

C: a (m X n) matrix

C—AXB A
AR

e Supports variable matrix size m A
e Execution:./mm [m] [n] [K]

On CUDA, We need to design
(1) How we parallelize computation
(2) How we put data on host memory & device memory

10

How We Parallelize Computation

In mm, we can compute different C elements in parallel
*On the other hand, it is harder to parallelize dot-product loop

OpenMP
eParallelize column-loop
(or row-loop) :
J
B
K‘
A
'd

REYVRK

CUDA (mm-v1-cuda)
e\We can create many threads

o1 thread computes 1 row
We use m threads

_(
|

A E/

>¢ This is not the unique way

?

11

000
:.
Parallelism in mm-v1-cuda
e Itis ok to make >1000, >10000 threads on CUDA
e \We use m threads for m rows computation
add<<<m/BS, BS>>>(.....);
gridDim blockDim (BS=16 in this sample)

1 element for 1 row - No need of “I” loop in this sample

Note1: <<<m, 1>>> also works, but speed is not good
<<<1, m>>> causes an error if m>1024 (CUDA's rule)

Note2: To support the case m is indivisible by BS, we should use
<<<(m+BS-1)/BS, BS>>>

—>But # of threads may be larger m. “Extra” threads (id=m) should
not work. See mm-v1-cuda/mm.c

Data Transfer in mm-v1-cuda |:

e A, B, C are copied from CPU to
CPU GPU GPU before computation

Transfer| a o cudaMemcpy(DA, A, ...) ...

e C is copied from GPU to CPU
after computation

e cudaMemcpy(C, DC, ...)

13

Notes in Time Measurement

e clock(), gettimeofday() must be called from CPU
e For accurate measurement, we should call

cudaDeviceSynchronize() before measurement

e Actually GPU kernel function call and
cudaMemcpy(HostToDevice) are non-blocking

Speed of mm-v1-cuda

Measured with a P100 GPU on TSUBAME3

m=n=k mm-acc mm-v1-cuda
1000 143(Gflops) 14(Gflops)
2000 173 27
4000 164 50
6000 138 70
8000 137 85

 The program outputs 2 speeds
« Speed with data transfer costs - shown on the above table
« Speed without data transfer costs

15

Discussion on Speed .
(related to [G2])

e mm-v1-cuda is slower than mm-acc
In mm-acc, i-loop and j-loop has “loop independent”
- m n elements are computed in parallel

e In mm-v1-cuda, we use m threads are used

> We need more parallelism on a GPU!
We see 4000 or 6000 threads are still insufficient

e (1thread=1row) and (1thread=1column) have different
speed
Due to “coalesced memory access”, explained in the next class

16

Parallelization of mm Sample

(related to [G2])

In mm, computation of each C element is independent

with each other

CUDA (mm-v1-cuda)

o1 thread computes 1 row
e We use m threads

" [

\ .

C

==

>¢ This is not the unique way

We have seen that this is
slower than OpenACC version
@ -- Why?

* The number of threads (m)
is still insufficient on GPUs

e |If (1thread = 1element), we
can use m*n threads

How can we do that on CUDA?

17

Creating Threads with 2D/3D IDs

e Now we want to make m*n (may be >1,000,000) thre

<<<(m*n)/BS, BS>>> is ok, but coding is bothersome

e On CUDA, gridDim and blockDim may have “dim3” type,
3D vector structure with x, y, z fields

(QeQ
REYER

)
VREYKY

\’@ ‘R ’@

RRY

RAYR
RV,

)
RAYKY

RRY

RIYY,

RIYR)

> This example is the case of 2D (Z dimensions are 1)

ads

cf) func <<< dim3(4,2,1), dim3(3,2,1) >>> (); > 48 threads
299
RRK
RVRAY

Thread IDs in multi-dimensional cases

In the case of func <<< dim3(4,2,1), dim3(3,2,1) >>> ();

EERICERIEERE
222/999/899)9
e
R

299280 RA9
[@ag/ear)leaq

e Forevery thread,
gridDim.x=4, gridDim.y=2, gridDim.z=1
blockDim.x=3, blockDim.y=2, blockDim.z=1
e For the thread with blue mark,
blockldx.x=1, blockldx.y=1, blockldx.z=0
threadldx.x=2, threadldx.y=0, threadldx.z=0

Threads in mm-cuda Sample

e The total number of threads are m*n

e How do we determine gridDim, blockDim?
<<<m, n>>> does not work for constraints explained later ®

e Here, we use fixed blockDim (x=16, y=16 - 256 threads per block)
Then gridDim is computed from M, N

e X is mapped to row index, y is mapped to column index (<)

M

RYRY)
VYR
(@ REY)

N
t®§
I\

0

 Ragara

DOD
BB

-

oI

(oD

| ’:@ R}

/l
/]ﬁ C

N

4

> A different mapping is possible,
but inefficient (explained later)

20

Code in mm2-cuda

gridDim blockDim
A \
! | \

matmul_kernel<<<dim3(m /BS, n/BS, 1), dm3(BS, BS, 1)>>>
(DA, DB, DC, m, n, k);

BS=16 in this sample
Actually, we use rounding up

In matmul_kernel function,

j = blockldx.y * blockDim.y + threadldx.y;
| = blockldx.x * blockDim.x + threadldx.x;
This thread computes C; < Only k loop

21

CUDA Rules on Number of
Threads

func<<<gs, bs>>> (...); is interpreted as
func<<<dim3(gs,1,1), dim3(bs,1,1)>>> (...);

gridDim blockDim

\
! k | [\

func<<<dim3(gx, gy, gz), dim3(b>(7y, bz)>>> (...);

< 231_
= 271 < 1024 =64

<
= 69935 Also, bx*by*bz must be =1024

BlockDim has severe limitation ®
Cf) <<<m, n>>> causes an error if n>1024 ® ”

Rules for Memory/Variables

e Variables declared in GPU kernel functions are
“thread private” ,@ ,@ ,@ ,@ ,@ ,@

zis | zis zis zis zis | zis
4 15 7 4 21 9
e Device memory is shared by all CUDA threads

Be careful to avoid race condition problem (multiple
threads write same address)

Reading same address is ok

e Do not forget host memory and device memory
are distributed

Two Types of GPU Kernel Functions |

1) Functions with _ global keyword
o “Gateway” from CPU
e Return value type must be “void”

2) Function with ___device keyword =~ — In OpenACC,
 Callable only from GPU #pragma acc routine
e Can have return values
e Recursive call is OK

on CPU | on GPU

Host !
f; Function :?' zr),
) f<<<gs,bs>>>(x);

What Can be Done in GPU e
Functions?

Basic computations (+, -, *, /, %, &&, ||...) are OK
if, for, while, return are OK

Device memory access is OK

Host memory access is NG

Calling host functions is NG

Calling most of functions in libc or other libraries for CPUs
are NG
Several mathematical functions, sin(), sqrt()... are OK
like OpenACC
Exceptionally, printf() is OK
unlike OpenACC ©

Calling malloc()/free() on GPU is OK, if the size is small

If we need large regions on device memory, call cudaMalloc()
from CPU

Assignments in GPU Part

(Abstract)

Choose one of [G1]—[G3], and submit a report
Due date: June 18 (Thursday)

(G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “mm-cuda” in
detall

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

26

Next Class:
e GPU Programming (4)

Discussion on diffusion
Some techniques for speed

27

	Practical Parallel Computing�(実践的並列コンピューティング)�
	Overview of This Course
	Comparing OpenMP/OpenACC/CUDA
	Calling A GPU Kernel Function from CPU
	Threads in CUDA
	To See Who am I
	Thread Block ID, Thread ID
	How Number of Threads is Designed? (1)
	How Number of Threads is Designed? (2)
	“mm” sample: Matrix Multiply�(related to [G2])
	How We Parallelize Computation
	Parallelism in mm-v1-cuda
	Data Transfer in mm-v1-cuda
	Notes in Time Measurement
	Speed of mm-v1-cuda
	Discussion on Speed�(related to [G2])
	Parallelization of mm Sample�(related to [G2])
	Creating Threads with 2D/3D IDs
	Thread IDs in multi-dimensional cases
	Threads in mm-cuda Sample
	Code in mm2-cuda
	CUDA Rules on Number of Threads
	Rules for Memory/Variables
	Two Types of GPU Kernel Functions
	What Can be Done in GPU Functions?
	Assignments in GPU Part�(Abstract)
	Next Class:

