
1

Practical Parallel Computing
(実践的並列コンピューティング)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Part2: GPU (3)
June 4, 2020

Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming

 4 classes
 Part 2: GPU programming

 4 classes We are here (3/4)
 OpenACC (1.5 classes) and CUDA (2.5 classes)

 Part 3: MPI for distributed memory programming
 3 classes

2

Comparing OpenMP/OpenACC/CUDA
OpenMP OpenACC CUDA

Processors CPU CPU+GPU
File extension .c, .cc .cu

To start parallel
(GPU) region

#pragma omp
parallel

#pragma acc kernels func<<<…, …>>>()

To specify # of
threads

export OMP_NUM
_THREADS=…

(num_gangs,
vector_length etc)

Desirable # of
threads

of CPU cores or
less

of GPU cores or “more”

To get thread ID omp_thread_num() - blockIdx, threadIdx
Parallel for loop #pragma omp for #pragma acc loop -

Task parallel #pragma omp task - -
To allocate device

memory
- #pragma acc data cudaMalloc()

To copy to/from
device memory

- #pragma acc data
#pragma acc update

cudaMemcpy()

Function on GPU - #pragma acc routine __global__,__device__
3

※ “# of XXX” = “The number of XXX”

Calling A GPU Kernel Function
from CPU
 A region executed by GPU must be a distinct function

 called a GPU kernel function

4

[CPU side]

func<<<20, 5>>>(…); __global__ void func(…)
{

:
return;

}

[GPU side]call

return
of thread blocks
of threads per block
In this case, 20x5=100
threads run on GPU

Threads in CUDA

cf) func <<< 4, 3 >>> (); 12 threads

5

A thread blockA grid A thread

Number of thread blocks
= gridDim

Number of threads per block
= blockDim

Specify 2 numbers (at least) for number of threads, when
calling a GPU kernel function

The reason is related to GPU hardware
Thread block ⇔ SMX, Thread ⇔ CUDA core

To See Who am I

 By reading the following special variables, each thread
can see its thread ID in GPU kernel function

 My ID
 blockIdx.x: Index of the block the thread belong to (≧0)
 threadIdx.x: Index of the thread (inside the block) (≧0)

 Number of thread/blocks
 gridDim.x: How many blocks are running
 blockDim.x: How many threads (per block) are running

6

Thread Block ID, Thread ID

7

A thread block
A grid

A thread

blockIdx.x = 1
threadIdx.x = 0

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

blockIdx.x = 2
threadIdx.x = 2

For every thread, gridDim.x = 4, blockDim.x = 3

Note: In order to see the entire sequential ID, we should compute
blockIdx.x * blockDim.x + threadIdx.x

How Number of Threads is
Designed? (1)
On CUDA, Different strategy is required from on OpenMP
On OpenMP, number of threads (OMP_NUM_THREADS)
should be ≦ CPU cores

 The number is basically determined by hardware
 ≦7 on q_node node, ≦28 on f_node

On CUDA, it is better to use number of thread ≧ GPU
cores

 ≧ 3584 on TSUBAME3’s P100 GPU
 You can use >1,000,000 threads!

8

How Number of Threads is
Designed? (2)
We have to deicide 2 numbers
<<<block number, block size>>>

A better way would be
(1)We decide total number of threads P
(2)We tune each block size BS

 Good candidates are 16, 32, 64, … 1024

(3)Then block number is P/BS
 We consider indivisible cases later

9

10

“mm” sample: Matrix Multiply
(related to [G2])

A: a (m×k) matrix, B: a (k×n) matrix
C: a (m×n) matrix

C ← A × B

 Supports variable matrix size
 Execution:./mm [m] [n] [k]

CA

B

m

k

k

n

CUDA versions are at
• /gs/hs1/tga-ppcomp/20/mm-v1-cuda/
• /gs/hs1/tga-ppcomp/20/mm-cuda/

On CUDA, We need to design
(1) How we parallelize computation
(2) How we put data on host memory & device memory

How We Parallelize Computation

OpenMP
Parallelize column-loop
(or row-loop)

11

A

B

C

j

In mm, we can compute different C elements in parallel
•On the other hand, it is harder to parallelize dot-product loop

CUDA (mm-v1-cuda)
We can create many threads
1 thread computes 1 row

 We use m threads

B

CA

※ This is not the unique way

Parallelism in mm-v1-cuda
 It is ok to make >1000, >10000 threads on CUDA
 We use m threads for m rows computation

add<<<m/BS, BS>>>(.....);

gridDim blockDim (BS=16 in this sample)

Note1: <<<m, 1>>> also works, but speed is not good
<<<1, m>>> causes an error if m>1024 (CUDA’s rule)

Note2: To support the case m is indivisible by BS, we should use
<<<(m+BS-1)/BS, BS>>>
But # of threads may be larger m. “Extra” threads (id≧m) should
not work. See mm-v1-cuda/mm.c

1 element for 1 row No need of “i” loop in this sample

Data Transfer in mm-v1-cuda
 A, B, C are copied from CPU to

GPU before computation
 cudaMemcpy(DA, A, …) …

 C is copied from GPU to CPU
after computation
 cudaMemcpy(C, DC, …)

13

CPU GPU

Comp

Transfer A
B
C

C

Notes in Time Measurement

 clock(), gettimeofday() must be called from CPU
 For accurate measurement, we should call

cudaDeviceSynchronize() before measurement
 Actually GPU kernel function call and

cudaMemcpy(HostToDevice) are non-blocking

Speed of mm-v1-cuda

m=n=k mm-acc mm-v1-cuda

1000 143(Gflops) 14(Gflops)

2000 173 27

4000 164 50

6000 138 70

8000 137 85

15

• The program outputs 2 speeds
• Speed with data transfer costs shown on the above table
• Speed without data transfer costs

•Measured with a P100 GPU on TSUBAME3

Discussion on Speed
(related to [G2])

 mm-v1-cuda is slower than mm-acc
 In mm-acc, i-loop and j-loop has “loop independent”
 m n elements are computed in parallel

 In mm-v1-cuda, we use m threads are used
 We need more parallelism on a GPU!

 We see 4000 or 6000 threads are still insufficient

 (1thread=1row) and (1thread=1column) have different
speed
 Due to “coalesced memory access”, explained in the next class

16

Parallelization of mm Sample
(related to [G2])

17

In mm, computation of each C element is independent
with each other

CUDA (mm-v1-cuda)
1 thread computes 1 row

 We use m threads

B

CA

※ This is not the unique way

We have seen that this is
slower than OpenACC version
 -- Why?

• The number of threads (m)
is still insufficient on GPUs

• If (1thread = 1element), we
can use m*n threads

How can we do that on CUDA?

m

Creating Threads with 2D/3D IDs
 Now we want to make m*n (may be >1,000,000) threads

 <<<(m*n)/BS, BS>>> is ok, but coding is bothersome
 On CUDA, gridDim and blockDim may have “dim3” type,

3D vector structure with x, y, z fields

18

cf) func <<< dim3(4,2,1), dim3(3,2,1) >>> (); 48 threads

※ This example is the case of 2D (Z dimensions are 1)

Thread IDs in multi-dimensional cases

 For every thread,
gridDim.x=4, gridDim.y=2, gridDim.z=1
blockDim.x=3, blockDim.y=2, blockDim.z=1

 For the thread with blue mark,
blockIdx.x=1, blockIdx.y=1, blockIdx.z=0
threadIdx.x=2, threadIdx.y=0, threadIdx.z=0

19

In the case of func <<< dim3(4,2,1), dim3(3,2,1) >>> ();

Threads in mm-cuda Sample
 The total number of threads are m*n
 How do we determine gridDim, blockDim?

 <<<m, n>>> does not work for constraints explained later

 Here, we use fixed blockDim (x=16, y=16 256 threads per block)
 Then gridDim is computed from M, N

 x is mapped to row index, y is mapped to column index (※)

20

M

N

C

N

M

※ A different mapping is possible,
but inefficient (explained later)

Code in mm2-cuda

21

matmul_kernel<<<dim3(m / BS, n / BS, 1), dim3(BS, BS, 1)>>>
(DA, DB, DC, m, n, k);

BS=16 in this sample
Actually, we use rounding up

In matmul_kernel function,
:

j = blockIdx.y * blockDim.y + threadIdx.y;
i = blockIdx.x * blockDim.x + threadIdx.x;

: This thread computes Cij Only k loop

gridDim blockDim

CUDA Rules on Number of
Threads

22

func<<<dim3(gx, gy, gz), dim3(bx, by, bz)>>> (...);

≦ 231-1
≦ 65535

≦ 1024 ≦64
Also, bx*by*bz must be ≦1024

BlockDim has severe limitation

gridDim blockDim

Cf) <<<m, n>>> causes an error if n>1024

func<<<gs, bs>>> (...); is interpreted as
func<<<dim3(gs,1,1), dim3(bs,1,1)>>> (...);

Rules for Memory/Variables
 Variables declared in GPU kernel functions are

“thread private”

 Device memory is shared by all CUDA threads
 Be careful to avoid race condition problem (multiple

threads write same address)
 Reading same address is ok

 Do not forget host memory and device memory
are distributed

z is
15

z is
4

z is
7

z is
4

z is
21

z is
9

Two Types of GPU Kernel Functions
1) Functions with __global__ keyword

 “Gateway” from CPU
 Return value type must be “void”

2) Function with __device__ keyword
 Callable only from GPU
 Can have return values
 Recursive call is OK

Host
Function

on CPU on GPU

Function with
__global__

Function with
__device__

f(x); f(x);
f(x);f<<<gs,bs>>>(x);

In OpenACC,
#pragma acc routine

What Can be Done in GPU
Functions?
 Basic computations (+, -, *, /, %, &&, ||...) are OK
 if, for, while, return are OK
 Device memory access is OK
 Host memory access is NG
 Calling host functions is NG
 Calling most of functions in libc or other libraries for CPUs

are NG
 Several mathematical functions, sin(), sqrt()… are OK

 like OpenACC
 Exceptionally, printf() is OK

 unlike OpenACC
 Calling malloc()/free() on GPU is OK, if the size is small

 If we need large regions on device memory, call cudaMalloc()
from CPU

26

Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 18 (Thursday)

[G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “mm-cuda” in
detail

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

27

Next Class:
 GPU Programming (4)
 Discussion on diffusion
 Some techniques for speed

	Practical Parallel Computing�(実践的並列コンピューティング)�
	Overview of This Course
	Comparing OpenMP/OpenACC/CUDA
	Calling A GPU Kernel Function from CPU
	Threads in CUDA
	To See Who am I
	Thread Block ID, Thread ID
	How Number of Threads is Designed? (1)
	How Number of Threads is Designed? (2)
	“mm” sample: Matrix Multiply�(related to [G2])
	How We Parallelize Computation
	Parallelism in mm-v1-cuda
	Data Transfer in mm-v1-cuda
	Notes in Time Measurement
	Speed of mm-v1-cuda
	Discussion on Speed�(related to [G2])
	Parallelization of mm Sample�(related to [G2])
	Creating Threads with 2D/3D IDs
	Thread IDs in multi-dimensional cases
	Threads in mm-cuda Sample
	Code in mm2-cuda
	CUDA Rules on Number of Threads
	Rules for Memory/Variables
	Two Types of GPU Kernel Functions
	What Can be Done in GPU Functions?
	Assignments in GPU Part�(Abstract)
	Next Class:

