
1

Practical Parallel Computing
(実践的並列コンピューティング)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Part1: OpenMP (４)
May 25, 2020

Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming

 4 classes We are here (4/4)
 Part 2: GPU programming

 OpenACC and CUDA
 4 classes

 Part 3: MPI for distributed memory programming
 3 classes

2

Today’s Topic
 TSUBAME Job submission
 Mutual exclusion, reduction, bottleneck in

OpenMP

3

About TSUBAME Usage
 In this lecture, “nodes on interactive queue” are usually

used
 7 cores (14 hyper threads)+ 1 GPU
 may be shared by several users

 If we want to use more cores/dedicated cores, we need
to use “job scheduler”
 With OpenMP, we can use up to 28 cores (56 hyper threads)
 With MPI, we can use several nodes

 But take care of a charge! (TSUBAME point)

4

5

What is Job Scheduler?
 You have to use the job scheduler (Univa Grid Engine on

TSUBAME3), when you execute programs
 Programs that consumes processors for “a long time”

 The job scheduler does “traffic control” of many programs by
many users

Without scheduler

Job Job Job Job

With scheduler

Job Job Job Job

Batch systemJob scheduler

If users execute programs without
control, there will be congestions

Scheduler determines nodes for each job.
Some program executions may be “queued”

Overview of Job Submission
(Section 5 in TSUBAME3.0 User’s Guide
at www.t3.gsic.titech.ac.jp)

(1) Prepare programs to be executed
(2) Prepare a text file called job script, which includes
 how the program is executed
 resource (nodes/CPUs) amounts required

(3) Submit the job by using qsub command (and wait)
(4) Check the output of the job

6

Prepare a Job Script
(Section 5.2.3)
 In the case of mm example
 /gs/hs1/tga-ppcomp/20/mm

 job.sh is used
 Different file name is ok, but with “.sh”

7

#!/bin/sh
#$ -cwd
#$ -l s_core=1
#$ -l h_rt=00:10:00

./mm 1000 1000 1000

Resource type and number:
How many processor cores/
nodes are allocated

Maximum run time

What are done on the
allocated node

Resource Types
(Section 5.1)

 A TSUBAME node (28 cores + 4GPUs) may
be too large for your program
 “mm” uses only a 1 core
 Please specify “proper” resource amounts

8

#$ -l [resource_type] = [Number]

#$ -l s_core=1  The minimum resource allocation

Job Submission
(Section 5.2.4)

 Job submission

 This works only when h_rt <= 0:10:00 (10 minutes)
 No charge (無料)
 The output looks like:

Your job 123456 ("job.sh") has been submitted
 If a job execution takes longer time, you have to

specify a “TSUBAME group” name

 Charged! (有料)
9

qsub job.sh

qsub –g [group-name] job.sh

File name of the job script

Job ID

Notes in This Lecture
 Usually, avoid consumption of TSUBAME points
 通常は無料利用の範囲にとどめてください

 h_rt <= 0:10:00

 If necessary for reports, you can use up to 72,000 points
in total per student

 本講義のレポートの作成に必要な場合、一人あたり合計で
72,000ポイントまで利用を認めます
 f_node x 20 hours

 Please check point consumption on TSUBAME portal
 The TSUBAME group name is tga-ppcomp

10

Check Job’s Outputs
 Where “mm” s outputs go to?
 When the job is executed successfully, two files

are generated automatically
 File names look like

 “job.sh.o123456”  “stdout” outputs are stored
 “job.sh.e123456”  “stderr” outputs are stored

11

Other Commands for Job
Management (Section 5.2.5, 5.2.6)

 qstat: To see the status of jobs under
submission

 You will also see your “interactive” job, but do not
“qdel” it usually

 qdel: To delete a job before its termination

12

qstat

qdel 123456 Job ID

Prepare a Job Script for
OpenMP Program (Section 5.2.3.2)
 In the case of mm-omp example
 /gs/hs1/tga-ppcomp/20/mm-omp

13

#!/bin/sh
#$ -cwd
#$ -l q_core=1
#$ -l h_rt=00:10:00

export OMP_NUM_THREADS=4
./mm 1000 1000 1000

Please choose a proper resource type
job-fnode.sh is an example with 28 cores

job.sh

Today’s Topic
 TSUBAME Job submission
 Mutual exclusion, reduction, bottleneck in

OpenMP

14

15

1

x

y

dx

Estimate approximation of π (circumference/diameter) by
approximation of integration

 Available at /gs/hs1/tga-ppcomp/20/pi/
 Method

 Let SUM be approximation of the yellow area
 4 x SUM  π

 Execution：./pi [n]
 n: Number of division
 Cf) ./pi 100000000

 Compute complexity： O(n)

“pi” sample

Note: This program is only for a simple sample.
π is usually computed by different algorithms.

dx = 1/n
y = sqrt(1-x*x)

Algorithm of “pi”

 Can we use #pragma
omp for?

 We have to consider
read&write access to
sum, a shared variable

16

double pi(int n) {
int i;
double sum = 0.0;
double dx = 1.0 / (double)n;

for (i = 0; i < n; i++) {
double x = (double)i * dx;
double y = sqrt(1.0 - x*x);
sum += dx*y;

}

return 4.0*sum; }

#pragma omp parallel
#pragma omp for ok???

Can We Parallelize the loop in
pi?
 Let us consider computations with different i

17

x = (double)i * dx;
y = sqrt(1.0 - x*x);
sum += dx*y;

C1 (i=i1) C2 (i=i2)

 W(C1) ∩ W(C2) ≠ ∅ Dependent!
 Do we have to abandon parallel execution?

these parts
are independent

dependent

x = (double)i * dx;
y = sqrt(1.0 - x*x);
sum += dx*y;

R(C1) = {sum,dx}, W(C1) = {sum} R(C2) = {sum,dx}, W(C2) = {sum}

※ private variables x, y and loop counter i are omitted

Some Versions of pi Sample
 pi: sequential version
Followings use OpenMP
 pi-bad-omp: has a bug that produces incorrect results
 pi-good-omp: results are correct, but slow
 pi-fast-omp: results are correct and faster
 pi-omp: same as pi-fast-omp but uses “reduce” option

18

What’s Wrong if Parallelized? (1)
 Now we simply consider C1: sum += 10; & C2: sum += 20;
 We assume “sum = 0” initially
 [Q] Does execution order of C1 & C2 affect the results?

 Note: “sum += 10” is compiled into machine codes like

19

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

※ reg1, reg2… are registers,
which are thread private

The results are same: sum=30. Ok to parallelize???

Case A: C1 then C2

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2

10

0

10

30

Case B: C2 then C1

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2

0

20

30

What’s Wrong if Parallelized? (2)
 No!!! The results can be different if C1 & C2 are

executed (almost) simultaneously

20

Case C

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2

10

0
0

20

Case D

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2

10

0
0

20

Now sum=20 Now sum=10

Such a bad situation is called “Race Condition”
The expected result is 30, but we may get bad results

 Please try “pi-bad-omp”

21

Mutual Exclusion to
Avoid Race Condition

⇒ With mutual exclusion,
race condition is avoided

Mutual exclusion (mutex):
Mechanism to control threads
so that only a single thread
can enter a “specific region”
 The region is called critical

section

Case C with Mutual Exclusion

CS start

CS end

CS終了

CS start

W
aiting!

sum=30

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2

22

Mutual Exclusion in OpenMP

doubl e sum = 0;
#pr agma omp par al l el

{
[do somet hi ng]

#pr agma omp cr i t i cal
sum += myans ;

}

#pragma omp critical makes
the following block/sentence
be critical section

Please try “pi-good-omp”

cf) ./pi 100000000
 Computes integral by multiple

threads
 The algorithm uses “sum += …”
 The answer is 3.1415…

But we see pi-good-omp is very slow 

Towards “Fast” Parallel
Software

 If the entire algorithm is divided into independent
computations (such as mm example), the story is easy

 But generally, most algorithms include both
 Computations that can be parallelized
 Computations that cannot (or hardly) be parallelized

⇒ The later part raises problems called “bottleneck”

23

Bottleneck

Bottle

Various Bottlenecks

24

Bottleneck by
critical sections

Bottleneck by
sequential part

Bottleneck by
load imbalance

Moreover, There are architectural bottlenecks

Bottle
neck

Bottle
neck

Bottle
neck

Amdahl’s Law
 We consider an algorithm. Then we let
 T1 : execution time with 1 processor core
 α: ratio of computation that can be parallelized
 1-α : ratio that CANNOT be parallelized (bottleneck)

⇒ Estimated execution time with p processor
cores is Tp = ((1 – α) + α / p) T1

25

Due to bottleneck, there is limitation in speed-up
no matter how many cores are used

T∞ = (1-α) T1

An Illustration of Amdahl’s Law

26

Parallelized
α T1

Bottleneck
(1-α) T1

With
p=2

With
p=4

With
p=1

T1

Scalability: How performance is
improved with larger resources
(p, in this context)

Amdahl’s law tells us
• if we want scalability with p～10, α should be >0.9
• if we want scalability with p～100, α should be >0.99

The Fact is Harder Than Theory
 According to Amdahl’s law, Tp is monotonically decreasing
 Is large p always harmless ??

27

Performance comparison of pi-omp and pi-good-omp
export OMP_NUM_THREADS= [p]
./pi 100000000

Reducing bottleneck is even more important
(than Amdahl’s law tells)

p pi-omp
pi-fast-omp

pi-good-omp

1 0.80 (sec) 1.8 (sec)
2 0.40 (sec) 9.4 (sec)
5 0.16 (sec) 10.9~13.0 (sec)
10 0.08 (sec) 13~16 (sec)

Slower! 

Reducing Bottlenecks
 Approaches for reducing

bottlenecks depend on algorithms!
 We need to consider, consider
 Some algorithms are essentially

difficult to be parallelized

28

 Some directions
 Reducing access to shared variables
 Reducing length of dependency chains

 called “critical path”
 Reducing parallelization costs

 entering/exiting “omp parallel”, “omp critical”… is not free
:

Cases of “pi” Sample
 “pi-good-omp” is slow, since each thread enters a critical

section too frequently
 To improve this, another pi-fast-omp version introduces

private variables

Step 1: Each thread accumulates values into private “local_sum”
Step 2: Then each thread does “sum += local_sum” in a critical section

once per thread

29

Why is pi-omp (the first omp version) also fast?
“omp for reduction(…)” is internally compiled to a
similar code as above

pi-fast-omp is fast and scalable 

Reduction Computations
in “omp for”
 “Summation in a for-loop” is one of typical computations
 called reduction computations

 In OpenMP, they can be integrated to “omp for”

30

Operator is one of
+, -, *, &&, ||,
max, min, etc

Name of reduction
variable

double sum = 0.0;

#pragma omp parallel
#pragma omp for reduction (+:sum)

for (i = 0; i < n; i++) {
double x = (double)i * dx;
double y = sqrt(1.0 - x*x);
sum += dx*y;

}

pi-omp is fast, like pi-fast-omp 
Also, programming is easier than pi-fast-omp 

What We Have Learned in
OpenMP Part
 OpenMP: A programming tool for parallel

computation by using multiple processor cores
 Shared memory parallel model
 #pragma omp parallel  Parallel region
 #pragma omp for  Parallelize for-loops
 #pragma omp task  Task parallelism

 We can use multiple processor cores, but only in
a single node node

31

Assignments in OpenMP Part
(Abstract)
Choose one of [O1]—[O3], and submit a report
Due date: June 4 (Thu)

[O1] Parallelize “diffusion” sample program by OpenMP.
(/gs/hs1/tga-ppcomp/20/diffusion/ on TSUBAME)

[O2] Parallelize “sort” sample program by OpenMP.
(/gs/hs1/tga-ppcomp/20/sort/ on TSUBAME)

[O3] (Freestyle) Parallelize any program by OpenMP.

For more detail, please see OpenMP (1) slides on May 14
32

33

Next Class:
 Part 2: GPU Programming (1)
 What GPU programming is
 Introduction to OpenACC

	Practical Parallel Computing�(実践的並列コンピューティング)�
	Overview of This Course
	Today’s Topic
	About TSUBAME Usage
	What is Job Scheduler?
	Overview of Job Submission�(Section 5 in TSUBAME3.0 User’s Guide�at www.t3.gsic.titech.ac.jp)
	Prepare a Job Script�(Section 5.2.3)
	Resource Types�(Section 5.1)
	Job Submission�(Section 5.2.4)
	Notes in This Lecture
	Check Job’s Outputs
	Other Commands for Job Management (Section 5.2.5, 5.2.6)
	Prepare a Job Script for OpenMP Program (Section 5.2.3.2)
	Today’s Topic
	“pi” sample
	Algorithm of “pi”
	Can We Parallelize the loop in pi?
	Some Versions of pi Sample
	What’s Wrong if Parallelized? (1)
	What’s Wrong if Parallelized? (2)
	Mutual Exclusion to �Avoid Race Condition
	Mutual Exclusion in OpenMP
	Towards “Fast” Parallel Software
	Various Bottlenecks
	Amdahl’s Law
	An Illustration of Amdahl’s Law
	The Fact is Harder Than Theory
	Reducing Bottlenecks
	Cases of “pi” Sample
	Reduction Computations�in “omp for”
	What We Have Learned in OpenMP Part
	Assignments in OpenMP Part�(Abstract)
	Next Class:

