
1

Practical Parallel Computing
(実践的並列コンピューティング)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Part1: OpenMP (2)
May 18, 2020

Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming

 4 classes We are here (2/4)
 Part 2: GPU programming

 OpenACC and CUDA
 4 classes

 Part 3: MPI for distributed memory programming
 3 classes

2

Summary of Previous Class
OpenMP is for shared-memory parallel programming
#pragma omp parallel defines a parallel region, where
multiple threads work simultaneously
With #pragma omp for, loop-based programs can be
parallelized easily
Shared variables and private variables
We have reviewed OpenMP version of mm sample

3

“diffusion” Sample Program

 Density of ink in each point vary according to
time Simulated by computers
 cf) Weather forecast compute wind speed,

temperature, air pressure…

An example of diffusion phenomena:
• Pour a drop of ink into a water glass

© 青木尊之

The ink spreads gradually, and finally the density
becomes uniform (Figure by Prof. T. Aoki, GSIC)

5

“diffusion” Sample on TSUBAME

 Execution：./diffusion [nt]
 nt: Number of time steps
 nx, ny: Space grid size

 nx=8192, ny=8192 (Fixed. See the code)
 How can we make them variables? (See mm sample)

 Compute Complexity：O(nx×ny×nt)

Available at /gs/hs1/tga-ppcomp/20/diffusion/

Expression of Space to be
Simulated

 Space to be simulated are divided into grids, and
expressed by arrays (2D in this sample)

nx

ny

Time step t=0 t=1 t=20

• Array elements are computed via timestep, by using
“previous” data

Stencil Computations
 A data point (x,y) at time t+1 is computed

using following data
 point (x,y) at time t
 “Neighbor” points of (x,y) at time t

 In diffusion sample, the computation is simply
“average of 5 points”

 Computations of similar type are called
“stencil computations”
 Frequently used in fluid simulations

7

time t+1time t

Original meanings of
“stencil”

Initial Conditions &
Boundary Conditions
In stencil computations, following data points cannot be
computed
Instead, we have to give them (for example, as input data)
All points at t=0 (Initial conditions)

 In diffusion sample, given in init()
“Boundary” points for all t (Boundary conditions)

 In diffusion sample, they are constant during simulation
 See ranges of for-loops in calc(); boundaries are skipped
 This is not good for simulation of a water glass , but it’s simple…

8t=1 t=20t=0

Initial Conditions Boundary Conditions

A Single Array Does not Work
Let us compute t t+1
With a single 2D array (Bug! )

9

We need neighbor points at
time t, but some have been
already updated to t+1 

Bad new data
 With separate 2D arrays (Good )

An array for t An array for t+1
We can access “old”
neighbor points correctly 

Double Buffering Technique
 A simple way is to make arrays for all time steps, but it

consumes too much memory! (nx × ny × nt?)
 It is sufficient to have “current” array and “next” array.
 It is better to use only “Double buffers”

An array for
“even” steps

An array for
“odd” steps

Compute t=0→t=1

Compute t=1→t=2

Compute t=2→t=3

※ Sample program uses a global variables
float data[2][NY][NX];

11

How We Parallelize “diffusion”
sample (Related to Assignment [O1])
calc() takes long time, complexity is O(nx ny nt)
It mainly uses “for” loops
 How about using #pragma omp parallel for ?
 Good! but…

There are 3 (t, x, y) loops. Which should be parallelized?
[Hint1] Parallelizing either of spatial loop (x, y) would be
good. Then spaces are divided into multiple threads
 [Q] Parallelizing t loop is a not good idea. Why?

[Hint2] Take care of “pitfall in nested loops” (see slides in
previous class)

Towards “Correct” Parallel
Programming
There are several types of bugs in parallel
programming
 Bugs in compile time

 Bugs in run time
 Bugs that abort execution (cf. segmentation fault)
 Silent bugs  Hardest to find!

All bugs should be avoided!
12

13

When Can We Use “omp for”?
 Loops with some (complex) forms cannot be supported,

unfortunately 
 The target loop must be in the following form
#pragma omp for

for (i = value; i op value; incr-part)

body

“op”: <, >, <=, >=, etc.

“incr-part”: i++, i--, i+=c, i-=c, etc.

OK : for (x = n; x >= 0; x-=4) …

ERROR : for (i = 0; test(i); i++) …

ERROR : for (p = head; p != NULL; p = p->next)

Bugs in
compile time

What are Differences between
These Codes?

 Both codes are ok in compile time and can be executed
 But only code A is correct  , code B has a bug 

 Code B’s results may be wrong
14

#pragma omp parallel for
for (i = 0; i < 99; i++) {

D[i+1] = D[i]+1.0;
}

#pragma omp parallel for
for (i = 0; i < 100; i++) {

D[i] = D[i]+1.0;
}

double D[100];
:

Code A

Code B

Sequential Execution and
Parallel Execution
[Sequential]
for (i = 0; i < 100; i++) …

15

[Parallel]
#pragma omp parallel for
for (i = 0; i < 100; i++) …

Comp at i=0

Comp at i=1
Comp at i=2

Comp at i=99

Comp at i=0

Comp at i=1

Comp at i=49

(in case of 2 threads)
i=50 is computed before i=49

Comp at i=50

Comp at i=51

Comp at i=99

Difference between Two Codes

16

#pragma omp parallel for
for (i = 0; i < 99; i++) {

D[i+1] = D[i]+1.0;
}

#pragma omp parallel for
for (i = 0; i < 100; i++) {

D[i] = D[i]+1.0;
}

Code A

Code B

It is ok to reorder 100 computations

Computations must be done in an order (i=0,1,2…)
 Parallelization breaks the order

Dependency between
Computations
We define following sets for computation C
Read set R(C): the set of variables read by C
Write set W(C): the set of variables written by C

 Ex) C: x = y+z  R(C) = {y, z}, W(C) = {x}

We define dependency between C1 and C2
If (W(C1) ∩ R(C2) ≠ ∅), C1 and C2 are dependent (write vs read)
If (R(C1) ∩ W(C2) ≠ ∅), C1 and C2 are dependent (read vs write)
If (W(C1) ∩ W(C2) ≠ ∅), C1 and C2 are dependent (write vs write)
Otherwise, C1 and C2 are independent

 ※ read vs read cases are independent

If C1 and C2 are independent, parallelization of C1 and C2 is safe 
17

Example of Dependency

18

#pragma omp parallel for
for (i = 0; i < 99; i++) {

D[i+1] = D[i]+1.0;  Bi
}

#pragma omp parallel for
for (i = 0; i < 100; i++) {

D[i] = D[i]+1.0;  Ai
}

Code A

Code B

R(Ai) = {D[i]}, W(Ai) = {D[i]}

R(Bi) = {D[i]}, W(Bi) = {D[i+1]}

All 100 computations are independent

R(Bi+1) ∩ W(Bi) = {D[i+1]} ≠ ∅ Dependent!

Dependency and Parallelism
in Stencil Computations (1)
Consider 1D stencil computation:

19

t=5

t=6
t=7

20 2119
x=

time t+1time t

We let Ct,x be computation of a single point ft+1,x
R(Ct,x) = {ft,x-1, ft,x, ft,x+1}, W(Ct,x) = {ft+1,x}

※ This is simpler than
“diffusion” (2D) samplefor (t = 0; t < NT; t++)

for (x = 1; x < NX-1; x++)
ft+1,x = (ft,x-1 + ft,x + ft,x+1) / 3.0 /* Ct,x */

※ This figure omits
double buffering
technique

Dependency and Parallelism
in Stencil Computations (2)

 Can we compute C5,20 and C5,21 in
parallel? (t is same, x is different)
 R(C5,20)={f5,19, f5,20, f5,21 }, W(C5,20)={f6,20}
 R(C5,21)={f5,20, f5,21, f5,22 }, W(C5,21)={f6,21}
 They are independent  (for all pairs of x)

 Can we compute C5,20 and C6,20 in
parallel? (t is different)
 R(C5,20)={f5,19, f5,20, f5,21 }, W(C5,20)={f6,20}
 R(C6,20)={f6,19, f6,20, f6,21 }, W(C6,20)={f7,20}
 They are dependent 

20

dependent!!

In Assignment [O1]
• it is OK to parallelize x-loop or y-loop
• it is NG to parallelize t-loop

Read vs. Read is Ok

Assignments in OpenMP Part
(Abstract)
Choose one of [O1]—[O3], and submit a report
Due date: June 4 (Thu)

[O1] Parallelize “diffusion” sample program by OpenMP.
(/gs/hs1/tga-ppcomp/20/diffusion/ on TSUBAME)

[O2] Parallelize “sort” sample program by OpenMP.
(/gs/hs1/tga-ppcomp/20/sort/ on TSUBAME)

[O3] (Freestyle) Parallelize any program by OpenMP.

For more detail, please see OpenMP (1) slides on May 14
21

If You Have Not Done This Yet
Please do the followings as soon as possible
Please make your account on TSUBAME
Please send an e-mail to ppcomp@el.gsic.titech.ac.jp

22

Subject: TSUBAME3 ppcomp account
To: ppcomp@el.gsic.titech.ac.jp

Department name:
School year:
Name:
Your TSUBAME account name:

Then we will invite you to the TSUBAME group, please click URL
and accept the invitation
その後、TSUBAMEグループへの招待を送ります。メール中の
URLをクリックして参加承諾してください

23

Next Class:
 OpenMP(3)
 “task parallelism” for programs with irregular

structures
 sort: Quick sort sample
 Related to assignment [O2]

	Practical Parallel Computing�(実践的並列コンピューティング)�
	Overview of This Course
	Summary of Previous Class
	“diffusion” Sample Program
	“diffusion” Sample on TSUBAME
	Expression of Space to be Simulated
	Stencil Computations
	Initial Conditions & �Boundary Conditions
	A Single Array Does not Work
	Double Buffering Technique
	How We Parallelize “diffusion” sample (Related to Assignment [O1])
	Towards “Correct” Parallel Programming
	When Can We Use “omp for”?
	What are Differences between These Codes?
	Sequential Execution and�Parallel Execution
	Difference between Two Codes
	Dependency between Computations
	Example of Dependency
	Dependency and Parallelism�in Stencil Computations (1)
	Dependency and Parallelism�in Stencil Computations (2)
	Assignments in OpenMP Part�(Abstract)
	If You Have Not Done This Yet
	Next Class:

