2020
Practical Parallel Computing

(EERMIEFH A E1—T12))

No. 2
'YX
Introduction (2) ceco
May 11, 2020 066
o0
O
Toshio Endo

School of Computing & GSIC
endo@is.titech.ac.jp

Overview of This Course

e Part O: Introduction
e 2 classes € We are here (2/2)

e Part 1: OpenMP for shared memory programming
e 4 classes

e Part 2: GPU programming
e OpenACC and CUDA
e 4 classes

e Part 3: MPI for distributed memory programming
e 3 classes

Computation on H
Computer Architecture

e Computation (Software) = Algorithm + Data

e Architecture (Hardware) = Processor + Memory
Note: This is so simplified discussion

Computer Architecture Computation Example

int a[3] = {10, 20, 30};
int i;

Processor

for(i=0;i<3;i++){
ali] = a[i] *2;

Memory

}

What is Parallel Architecture?

e Parallel architecture has MULTIPLE components
e [wo basic types:

Shared memory Distributed memory
parallel architecture parallel architecture
network
Processor

Memory

e Different programming methods are used for
different architecture ‘

Modern SCs use Both! o°

Modern SCs are combination of “shared” and “distributed
“shared memory” in a node
“distributed memory” among nodes, connected by network

I I I I\ network

\ Compute node

K>Z< Moreover, each processor (core) may have N
SIMD parallelism , such as SSE, AVX...
A processor (core) can do several
computations at once

SIMD is out of scope of this class 5

-

(Confusing) Terminology
e |In old days, definition of “processor” was simple

O

e Since around 2005, “multicore processor”

became poplar
A processor QOG\ A processor
— core
OO0

package
{ X Hyperthreading makes }
6

discussion more complex,
but skipped

A TSUBAME3 Node s

e 2 processor packages (CPU) X 14 cores
e 28 cores share memory

Node

Network:
connected to
other nodes

256GB Memory

X 540 nodes

e GPUs are (still) omitted in this figure 7

A TSUBAME3 Node with GPUs |:

e A node has 2 CPUs + 4 GPUs
e Each GPU (Tesla P100) has 3,584 cores

Node

16GB [| 16GB 16GB | [16GB
mem || mem mem | | mem

Network:
connected to
other nodes

256GB Memory x 540 nodes

8

A TSUBAME3 Node in More Detail

x16 PCle
POH Le—2M! > OPAHFI
16 PCI 16 PCI
SSD .%" X ——p “——— OPA HFI
DIMM x16 PCle
Sl CPU 0
DIMM GPU 0 @' GPU 1
DIMM
N —ifir—
CJ.I .
8; QPI NVLink
(9] DIMM
DIMM CPU 1 e GPU 2 [@m====pp| GPU 3
[DIMM_je—>
DIMM x16 PCle x16 PCle
DIMM
x16 PClo? OPA HFI

x16 PCle

>

OPA HFI

100Gbps

—>

100Gbps

—>

100Gbps

—>

100Gbps

>

Classification of Parallel 3
Programming Models "
S tial Shared memory Distributed memory
squentia prog. model prog. model
T 1 1 1

5’%‘?2233’% S35 35553

= = 11

Programming Threads have access Need communication

without to shared data among processes
parallelsim * OpenMP * MPI
* pthread socket

 Java thread... * Hadoop, Spark...

10

Programming Models 1

on Architecture :
Shared memory model | | Distributed memory model
Shared memory arch. Distributed memory arch.

\
It's OK to make multiple
processes on a node

e Shared memory model (Part 1) can use only cores in a
single node (up to 28 cores on TSUBAME3)

e Distributed memory model (Part 3) supports large scale
parallelism (~15,000 cores on TSUBAME3)

11

Parallel Programming Methods | ::::

on TSUBAME .
OpenACC/CUDA

/ Node Node Node

| |
GPU , GPU

{| cru
1 EIOO0
1|e o0e

[Standard route][Web-only route]

TSUBAME Interactive Node

Node (r7i7nX)
]

A node is partitioned into 4. Each user can use

e anode =7 CPU cores + 60GB memory + 1 GPU (3584cores+16GB mem)
e Only one partition simultaneously

A partition may be shared by several users - you may suffer from slow dewn

Sample Programs in this
Lecture

e /gs/hs1/tga-ppcomp/20/ directory
e You have to a member of tga-ppcomp group
e There are sub-directories per sample

e Sequential sample programs
e pi: approximation of pi ()
o mm: matrix multiplication
o diffusion: simple simulation of diffusion phenomena
o fib: Fibonacci number
e sort: quick-sort sample

14

Using Sample Programs (1) e
Make Copies

e Samples in/gs/... are “read-only”, so make copies
of samples into somewhere in your home directory

Where is somewhere? If you are using web-only route,
~/t3workspace looks good

In the case of “mm” sample

cd ~/t3workspace
cp —r /gs/hs1/tga-ppcomp/20/mm . —
cd mm

_don't forget
space & dot

15

Using Sample Programs (2)

Executing mm

n the case of “mm” sample

Is

make

J/mm 1000 1000 1000

16

Using Sample Programs (3)
Executing Samples e

Before execution, please do “copy” and “make” for each sample

® MM

Options are matrix sizes m,n,k

Jmm 1000 1000 1000
e DI

./pi 10000000
e diffusion

Jdiffusion 20
o fib
fib 40

e sort
Jsort 10000000

Option is number of samples n

Option is number of time steps nt

Option is sequence index n

Option is array length n to be sorted

“mm” sample: Matrix Multiply | s::

Available at /gs/hs1/tga-ppcomp/20/mm/

A: a (m X k) matrix

B: a (k X n) matrix B
C: a (m X n) matrix k >
C—AB X m
v
e T[his sample supports variable m A C
matrix sizes
K n

e Execution: ./mm [m] [n] [K]

18

Matrix Multiply Algorithm (1)

k C,; Is defined as the dot product of
' * As i-th row

! * B’s j-th column
Agl | C

k n
The algorithm uses triply-nested loop
for (i =0, i <m; i+) { «—Foreachrowin C
for (j =0; j <n; j++) { —For each columnin C
for (I =0; | <k; [++) { «—For dot product
Ci,j += Ai,1 * Bl,j;
Frt ”

Matrix Multiply Algorithm (2) :::
for (i =0; i <m; i++) 1 —For each rowin C
for (j =0; j <n; j+H) { —For each columnin C

for (I =0; | <k; [++) { —For dot product
(Ci,j += Ai,1 * Bi,j; |
Pk

e The innermost statement is executed for mnk times
e Compute Complexity: O(mnk)

o Computation speed (Flops) is obtained as %mnk/t, where tis
execution time

The innermost statement includes
2 (floating point) calculations: *, +

e [Q] What if loop order is changed?

o Number of operations does not change. But how is the speed? 20

Variable Length Arrays in
(Classical) C Language

e double C[n]; raises an error. How do we do?
e void *malloc(size t size);

= Allocates a memory region of size bytes from “heap region”,
and returns its head pointer

e \When it becomes unnecessary, it should be discarded with
free() function

A variable length array

A fixed length array

: double *C;
double C[5]: C = (double *)malIoc(sizeof(double);p);
free(C);

> Exceptionally, C99 specification includes variable length arrays |

How We Do for Multiple
Dimensional Arrays

double C[m][n]; raises an error. How do we do?
Not in a straightforward way. Instead, we do either of:

(1) Use a pointer of pointers
e We malloc m 1D arrays for every row (each has n length)
e We malloc 1D array of m length to store the above pointers

(2) Use a 1D array with length of mXxn
(mm sample uses this method)

e To access an array element, we should use C[i*n+j] or C[i+j*m],
instead of CJi][j]

22

Express a 2D array

using a 1D array

A

“I want

touse ...’

Expressions in C language (Example)

_

m

a 2D array C[m][n]

[

— C[1][3]

Tho |- o foo
NS

1
6
3

NINTYIS
-on\)-o\A
MNP N

n

~

/

double *C; C = malloc(sizeof(double)*m*n);

n

~
7

18131714

1

210

2

1

0

3

C[1*n+3]

In this case, an element Ci,j Is C[i*n+j]

23

Two Data Formats

N
\

Row major format
* More natural for C C. =Cli*n+]]
programmers J

v VvV VY

Column major format

» BLAS library .
« mm sample uses this C;;=C[i+]"m] m

e \We have more choices for 3D, 4D... arrays

[Q] Does the format affect the execution speed?

24

Actual Codes in mm Sample :

—

for (i =0; i <m it) A
for (j =0; j <n; j+) {
for (1 =0; | <k; I++) {)
Ci,i += Ai, 1 * BI,j;
Frl
v _
for (j =0; j <n; j+) {
for (1=0; | <k; I+) { i
double blj = B[I+j*Idb];
for (i =O; i< m; i+Jer)_
double ail = Ali+l*ldal; B

C[i+j*|dc]w -
1) \=m

- |JL order

Changed to JLI order
(a bit faster)

K

Time Measurement in Samples

e gettimeofday() function is used

o It provides wall-clock time, not CPU time
o Time resolution is better than clock()

{

#include <stdio.h>
#include <sys/time.h>

struct timeval st, et;
long us;
gettimeofday(&st, NULL); /* Starting time */

- - *Part for measurement - - -

gettimeofday(&et, NULL); /* Finishing time */

us = (et.tv_sec—st.tv_sec)*1000000+
(et.tv_usec—st.tv_usec);

/* us is difference between st & et in microseconds */

If You Have Not Done This Yet

Please do the followings as soon as possible
e Please make your account on TSUBAME
e Please send an e-mail to ppcomp@el.gsic.titech.ac.jp

Subject: TSUBAMES3 ppcomp account
To: ppcomp@el.gsic.titech.ac.ip
Department name:
School year:
Name:
Your TSUBAME account name:

Then we will invite you to the TSUBAME group, please click URL
and accept the invitation

ZMD#%.TSUBAMES IL—TADIBHFEEYFET , A—ILFDURLE
H1)yo LTS MAEL TLIEELY

27

eo0o

Next Class: eecs
Introduction to OpenMP :
e Shared memory parallel

programming API

- int i;

e Extensions to C/C++, #pragma omp parallel for

Fortran for (i =0; i <1005 i+) {
e Includes directives& library | alil = bliltelils

functions

o Directives:#pragma omp ~~

28

	2020�Practical Parallel Computing�(実践的並列コンピューティング)�No. 2
	Overview of This Course
	Computation on �Computer Architecture
	What is Parallel Architecture?
	Modern SCs use Both!
	(Confusing) Terminology
	A TSUBAME3 Node
	A TSUBAME3 Node with GPUs
	A TSUBAME3 Node in More Detail
	Classification of Parallel Programming Models
	Programming Models�on Architecture
	Parallel Programming Methods�on TSUBAME
	TSUBAME Interactive Node
	Sample Programs in this Lecture
	Using Sample Programs (1)�Make Copies
	Using Sample Programs (2)�Executing mm
	Using Sample Programs (3)�Executing Samples
	“mm” sample: Matrix Multiply
	Matrix Multiply Algorithm (1)
	Matrix Multiply Algorithm (2)
	Variable Length Arrays in (Classical) C Language
	How We Do for Multiple Dimensional Arrays
	Express a 2D array �using a 1D array
	Two Data Formats
	Actual Codes in mm Sample
	Time Measurement in Samples
	If You Have Not Done This Yet
	Next Class：�Introduction to OpenMP

