
1

2020
Practical Parallel Computing
(実践的並列コンピューティング)

No. 2

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Introduction (2)
May 11, 2020

Overview of This Course
 Part 0: Introduction

 2 classes We are here (2/2)
 Part 1: OpenMP for shared memory programming

 4 classes
 Part 2: GPU programming

 OpenACC and CUDA
 4 classes

 Part 3: MPI for distributed memory programming
 3 classes

2

Computation on
Computer Architecture
 Computation (Software) = Algorithm + Data
 Architecture (Hardware) = Processor + Memory
Note: This is so simplified discussion

3

Processor

Memory

Computer Architecture Computation Example

int a[3] = {10, 20, 30};
int i;

for (i = 0; i < 3; i++) {
a[i] = a[i] *2;

}
10 20 30

* 2

20 40 60

What is Parallel Architecture?
 Parallel architecture has MULTIPLE components
 Two basic types:

4

Shared memory
parallel architecture

Distributed memory
parallel architecture

Processor

Memory

network

 Different programming methods are used for
different architecture

5

Modern SCs use Both!
Modern SCs are combination of “shared” and “distributed”
“shared memory” in a node
“distributed memory” among nodes, connected by network

Compute node

※ Moreover, each processor (core) may have
SIMD parallelism , such as SSE, AVX…
A processor (core) can do several
computations at once
SIMD is out of scope of this class

+ + +

network

(Confusing) Terminology
 In old days, definition of “processor” was simple

6

=
 Since around 2005, “multicore processor”

became popular

=
A processor
package

A processor
core

※ Hyperthreading makes
discussion more complex,
but skipped

Node

256GB Memory

A TSUBAME3 Node
 2 processor packages (CPU) × 14 cores
 28 cores share memory

7

Network:
connected to
other nodes

x 540 nodes

 GPUs are (still) omitted in this figure

CPU CPU

Node

256GB Memory

A TSUBAME3 Node with GPUs
 A node has 2 CPUs + 4 GPUs
 Each GPU (Tesla P100) has 3,584 cores

8

Network:
connected to
other nodes

x 540 nodes

GPU

16GB
mem

GPU

16GB
mem

GPU

16GB
mem

GPU

16GB
mem

CPU CPU

A TSUBAME3 Node in More Detail

CPU 0

PLX

GPU 0

OPA HFI

OPA HFI

DIMM
DIMM
DIMM

DIMM

GPU 1

CPU 1DIMM
DIMM
DIMM

DIMM

PLX OPA HFI

GPU 2 GPU 3

OPA HFI

PCH

SSD

QPI NVLink

x16 PCIe

x16 PCIe

x16 PCIe

x16 PCIe

x16 PCIe

x16 PCIe x16 PCIe

x16 PCIe x16 PCIe

x16 PCIe

x4 PCIe

DMI
100Gbps

100Gbps

100Gbps

100Gbps

256G
B

10

Classification of Parallel
Programming Models

Sequential

Process/
Thread

Data

Shared memory
prog. model

Distributed memory
prog. model

Threads have access
to shared data
• OpenMP
• pthread
• Java thread…

Need communication
among processes
• MPI
• socket
• Hadoop, Spark…

Programming
without
parallelsim

11

Programming Models
on Architecture

 Shared memory model (Part 1) can use only cores in a
single node (up to 28 cores on TSUBAME3)

 Distributed memory model (Part 3) supports large scale
parallelism (~15,000 cores on TSUBAME3)

Shared memory model Distributed memory model

Distributed memory arch.Shared memory arch.

It’s OK to make multiple
processes on a node

Parallel Programming Methods
on TSUBAME

12

Node

Memory

GPU GPU GPU GPU

CPU CPU

Node

Memory

GPU GPU GPU GPU

CPU CPU

Node

Memory

GPU GPU GPU GPU

CPU CPU

MPI
OpenMP Sequential

OpenACC/CUDA

TSUBAME Interactive Node

13

Node (r7i7nX)

GPU GPU GPU GPU

Standard route Web-only route

CPU CPU

Memory

A node is partitioned into 4. Each user can use
 ¼ node = 7 CPU cores + 60GB memory + 1 GPU (3584cores+16GB mem)
 Only one partition simultaneously
A partition may be shared by several users  you may suffer from slow down

Sample Programs in this
Lecture
 /gs/hs1/tga-ppcomp/20/ directory
 You have to a member of tga-ppcomp group
 There are sub-directories per sample

 Sequential sample programs
 pi: approximation of pi (π)
 mm: matrix multiplication
 diffusion: simple simulation of diffusion phenomena
 fib: Fibonacci number
 sort: quick-sort sample

14

Using Sample Programs (1)
Make Copies
 Samples in /gs/… are “read-only”, so make copies

of samples into somewhere in your home directory
 Where is somewhere? If you are using web-only route,

~/t3workspace looks good
 In the case of “mm” sample

15

[make sure that you are at a interactive
node (r7i7nX)]
cd ~/t3workspace [In web-only route]
cp –r /gs/hs1/tga-ppcomp/20/mm .
cd mm

don’t forget
space & dot

Using Sample Programs (2)
Executing mm
 In the case of “mm” sample

16

[make sure that you are at mm directory]
ls
[you will see 3 files of mm.c, Makefile, job.sh]
make
[this creates an executable file “mm”]
./mm 1000 1000 1000
[this is the execution of mm sample]

Using Sample Programs (3)
Executing Samples

Before execution, please do “copy” and “make” for each sample
 mm

 pi

 diffusion

 fib

 sort
17

./mm 1000 1000 1000 Options are matrix sizes m,n,k

./pi 10000000 Option is number of samples n

./diffusion 20 Option is number of time steps nt

./fib 40 Option is sequence index n

./sort 10000000 Option is array length n to be sorted

18

“mm” sample: Matrix Multiply

A: a (m×k) matrix
B: a (k×n) matrix
C: a (m×n) matrix

C ← A B

 This sample supports variable
matrix sizes

 Execution: ./mm [m] [n] [k]

CA

B

m

k

k

n

Available at /gs/hs1/tga-ppcomp/20/mm/

Matrix Multiply Algorithm (1)

19

for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {
Ci,j += Ai,l * Bl,j;

} } }

←For each row in C
←For each column in C
←For dot product

CA

B

m

k

k

n
The algorithm uses triply-nested loop

Ci,j is defined as the dot product of
• A’s i-th row
• B’s j-th column

Matrix Multiply Algorithm (2)

 The innermost statement is executed for mnk times
 Compute Complexity：O(mnk)

 Computation speed (Flops) is obtained as 2mnk/t, where t is
execution time

20

for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {
Ci,j += Ai,l * Bl,j;

} } }

←For each row in C
←For each column in C
←For dot product

The innermost statement includes
2 (floating point) calculations: *, +

 [Q] What if loop order is changed?

 Number of operations does not change. But how is the speed?

21

Variable Length Arrays in
(Classical) C Language
 double C[n]; raises an error. How do we do?
 void *malloc(size_t size);

⇒ Allocates a memory region of size bytes from “heap region”,
and returns its head pointer

 When it becomes unnecessary, it should be discarded with
free() function

double *C;
C = (double *)malloc(sizeof(double)*n);

… C[i] can be used …

free(C);

double C[5];

… C[i] can be used …

A fixed length array

※ Exceptionally, C99 specification includes variable length arrays

array length

A variable length array

22

How We Do for Multiple
Dimensional Arrays
double C[m][n]; raises an error. How do we do?
Not in a straightforward way. Instead, we do either of:

(1) Use a pointer of pointers
 We malloc m 1D arrays for every row (each has n length)
 We malloc 1D array of m length to store the above pointers

(2) Use a 1D array with length of m×n
(mm sample uses this method)

 To access an array element, we should use C[i*n+j] or C[i+j*m],
instead of C[i][j]

Express a 2D array
using a 1D array

23

8 3 7 4 1 2
0 2 1 5 0 3
1 8 6 4 2 1
3 4 8 1 0 2

m

n

a 2D array C[m][n]

“I want
to use …”

8 3 7 4 1 2 0 2 1 5 8 1 0 20 3

Expressions in C language (Example)
double *C; C = malloc(sizeof(double)*m*n);

n

C[1][3]

C[1*n+3]

In this case, an element Ci,j is C[i*n+j]

Two Data Formats

 We have more choices for 3D, 4D… arrays

[Q] Does the format affect the execution speed?
24

Row major format
• More natural for C

programmers

Column major format
• BLAS library
• mm sample uses this

Ci,j⇒C[i*n+j]

Ci,j⇒C[i+j*m] m

n

Actual Codes in mm Sample

25

for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {
Ci,j += Ai,l * Bl,j;

} } }

for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {
double blj = B[l+j*ldb];
for (i = 0; i < m; i++) {

double ail = A[i+l*lda];
C[i+j*ldc] += ail*blj;

}}}

IJL order

Changed to JLI order
(a bit faster)

=k

=m

26

Time Measurement in Samples
 gettimeofday() function is used
 It provides wall-clock time, not CPU time
 Time resolution is better than clock()
#include <stdio.h>
#include <sys/time.h>

:
{

struct timeval st, et;
long us;
gettimeofday(&st, NULL); /* Starting time */

・・・Part for measurement ・・・
gettimeofday(&et, NULL); /* Finishing time */
us = (et.tv_sec-st.tv_sec)*1000000+

(et.tv_usec-st.tv_usec);
/* us is difference between st & et in microseconds */

}

If You Have Not Done This Yet
Please do the followings as soon as possible
 Please make your account on TSUBAME
 Please send an e-mail to ppcomp@el.gsic.titech.ac.jp

27

Subject: TSUBAME3 ppcomp account
To: ppcomp@el.gsic.titech.ac.jp

Department name:
School year:
Name:
Your TSUBAME account name:

Then we will invite you to the TSUBAME group, please click URL
and accept the invitation
その後、TSUBAMEグループへの招待を送ります。メール中のURLを
クリックして参加承諾してください

28

Next Class：
Introduction to OpenMP
 Shared memory parallel

programming API
 Extensions to C/C++,

Fortran
 Includes directives& library

functions
 Directives：#pragma omp ~~

int i;
#pragma omp parallel for

for (i = 0; i < 100; i++) {
a[i] = b[i]+c[i];

}

	2020�Practical Parallel Computing�(実践的並列コンピューティング)�No. 2
	Overview of This Course
	Computation on �Computer Architecture
	What is Parallel Architecture?
	Modern SCs use Both!
	(Confusing) Terminology
	A TSUBAME3 Node
	A TSUBAME3 Node with GPUs
	A TSUBAME3 Node in More Detail
	Classification of Parallel Programming Models
	Programming Models�on Architecture
	Parallel Programming Methods�on TSUBAME
	TSUBAME Interactive Node
	Sample Programs in this Lecture
	Using Sample Programs (1)�Make Copies
	Using Sample Programs (2)�Executing mm
	Using Sample Programs (3)�Executing Samples
	“mm” sample: Matrix Multiply
	Matrix Multiply Algorithm (1)
	Matrix Multiply Algorithm (2)
	Variable Length Arrays in (Classical) C Language
	How We Do for Multiple Dimensional Arrays
	Express a 2D array �using a 1D array
	Two Data Formats
	Actual Codes in mm Sample
	Time Measurement in Samples
	If You Have Not Done This Yet
	Next Class：�Introduction to OpenMP

