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Overview of This Course
 Part 0: Introduction

 2 classes We are here (2/2)
 Part 1: OpenMP for shared memory programming 

 4 classes
 Part 2: GPU programming

 OpenACC and CUDA
 4 classes

 Part 3: MPI for distributed memory programming
 3 classes
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Computation on 
Computer Architecture
 Computation (Software) = Algorithm + Data
 Architecture (Hardware) = Processor + Memory
Note: This is so simplified discussion
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Processor

Memory

Computer Architecture Computation Example

int a[3] = {10, 20, 30};
int i;

for (i = 0; i < 3; i++) {
a[i] = a[i] *2;

}
10 20 30

* 2

20 40 60



What is Parallel Architecture?
 Parallel architecture has MULTIPLE components
 Two basic types:
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Shared memory 
parallel architecture

Distributed memory
parallel architecture

Processor

Memory

network

 Different programming methods are used for 
different architecture
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Modern SCs use Both!
Modern SCs are combination of “shared” and “distributed”
“shared memory” in a node
“distributed memory” among nodes, connected by network

Compute node

※ Moreover, each processor (core) may have 
SIMD parallelism , such as SSE, AVX…
A processor (core) can do several 
computations at once
SIMD is out of scope of this class

+ + +

network



(Confusing) Terminology
 In old days, definition of “processor” was simple

6

=
 Since around 2005, “multicore processor” 

became popular

=
A processor
package

A processor
core

※ Hyperthreading makes 
discussion more complex, 
but skipped



Node

256GB Memory

A TSUBAME3 Node
 2 processor packages (CPU) × 14 cores
 28 cores share memory
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Network:
connected to 
other nodes

x 540 nodes

 GPUs are (still) omitted in this figure

CPU CPU



Node

256GB Memory

A TSUBAME3 Node with GPUs
 A node has 2 CPUs + 4 GPUs
 Each GPU (Tesla P100) has 3,584 cores
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Network:
connected to 
other nodes

x 540 nodes

GPU

16GB
mem

GPU

16GB
mem

GPU

16GB
mem

GPU

16GB
mem

CPU CPU



A TSUBAME3 Node in More Detail
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Classification of Parallel 
Programming Models

Sequential

Process/
Thread

Data

Shared memory
prog. model

Distributed memory
prog. model

Threads have access
to shared data
• OpenMP
• pthread
• Java thread…

Need communication
among processes
• MPI
• socket
• Hadoop, Spark…

Programming 
without 
parallelsim
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Programming Models
on Architecture

 Shared memory model (Part 1) can use only cores in a 
single node (up to 28 cores on TSUBAME3)

 Distributed memory model (Part 3) supports large scale 
parallelism (~15,000 cores on TSUBAME3)

Shared memory model Distributed memory model

Distributed memory arch.Shared memory arch.

It’s OK to make multiple
processes on a node



Parallel Programming Methods
on TSUBAME
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Node

Memory

GPU GPU GPU GPU

CPU CPU

Node

Memory

GPU GPU GPU GPU

CPU CPU

Node

Memory

GPU GPU GPU GPU

CPU CPU

MPI
OpenMP Sequential

OpenACC/CUDA



TSUBAME Interactive Node

13

Node (r7i7nX)

GPU GPU GPU GPU

Standard route Web-only route

CPU CPU

Memory

A node is partitioned into 4. Each user can use
 ¼ node = 7 CPU cores + 60GB memory + 1 GPU (3584cores+16GB mem)
 Only one partition simultaneously
A partition may be shared by several users  you may suffer from slow down



Sample Programs in this 
Lecture
 /gs/hs1/tga-ppcomp/20/ directory
 You have to a member of tga-ppcomp group
 There are sub-directories per sample

 Sequential sample programs
 pi: approximation of pi (π)
 mm: matrix multiplication
 diffusion: simple simulation of diffusion phenomena
 fib: Fibonacci number
 sort: quick-sort sample
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Using Sample Programs (1)
Make Copies
 Samples in /gs/… are “read-only”, so make copies 

of samples into somewhere in your home directory
 Where is somewhere? If you are using web-only route, 

~/t3workspace looks good
 In the case of “mm” sample
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[make sure that you are at a interactive 
node (r7i7nX) ]
cd ~/t3workspace    [In web-only route]
cp –r /gs/hs1/tga-ppcomp/20/mm .
cd mm

don’t forget 
space & dot



Using Sample Programs (2)
Executing mm
 In the case of “mm” sample
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[make sure that you are at mm directory]
ls
[you will see 3 files of mm.c, Makefile, job.sh]
make
[this creates an executable file “mm”]
./mm 1000 1000 1000
[this is the execution of mm sample]



Using Sample Programs (3)
Executing Samples

Before execution, please do “copy” and “make” for each sample
 mm

 pi

 diffusion

 fib

 sort
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./mm 1000 1000 1000 Options are matrix sizes m,n,k

./pi 10000000 Option is number of samples n

./diffusion 20 Option is number of time steps nt

./fib 40 Option is sequence index n

./sort 10000000 Option is array length n to be sorted
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“mm” sample: Matrix Multiply

A: a (m×k) matrix
B: a (k×n) matrix
C: a (m×n) matrix

C ← A  B

 This sample supports variable 
matrix sizes

 Execution: ./mm [m] [n] [k]

CA

B

m

k

k

n

Available at /gs/hs1/tga-ppcomp/20/mm/



Matrix Multiply Algorithm (1)
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for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {
Ci,j += Ai,l * Bl,j;

} } }

←For each row in C
←For each column in C
←For dot product

CA

B

m

k

k

n
The algorithm uses triply-nested loop

Ci,j is defined as the dot product of
• A’s i-th row
• B’s j-th column



Matrix Multiply Algorithm (2)

 The innermost statement is executed for mnk times
 Compute Complexity：O(mnk)

 Computation speed (Flops) is obtained as 2mnk/t, where t is 
execution time
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for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {
Ci,j += Ai,l * Bl,j;

} } }

←For each row in C
←For each column in C
←For dot product

The innermost statement includes 
2 (floating point) calculations: *, +

 [Q] What if loop order is changed?

 Number of operations does not change. But how is the speed?
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Variable Length Arrays in 
(Classical) C Language
 double C[n]; raises an error. How do we do?
 void *malloc(size_t size);

⇒ Allocates a memory region of size bytes from “heap region”, 
and returns its head pointer

 When it becomes unnecessary, it should be discarded with 
free() function

double *C;
C = (double *)malloc(sizeof(double)*n);

… C[i] can be used …

free(C);

double C[5];

… C[i] can be used …

A fixed length array

※ Exceptionally, C99 specification includes variable length arrays

array length

A variable length array
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How We Do for Multiple 
Dimensional Arrays
double C[m][n]; raises an error. How do we do? 
Not in a straightforward way. Instead, we do either of:

(1) Use a pointer of pointers
 We malloc m 1D arrays for every row (each has n length)
 We malloc 1D array of m length to store the above pointers

(2) Use a 1D array with length of  m×n
(mm sample uses this method)

 To access an array element, we should use C[i*n+j] or C[i+j*m], 
instead of C[i][j]



Express a 2D array 
using a 1D array
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8 3 7 4 1 2
0 2 1 5 0 3
1 8 6 4 2 1
3 4 8 1 0 2

m

n

a 2D array C[m][n]

“I want
to use …”

8 3 7 4 1 2 0 2 1 5 8 1 0 20 3

Expressions in C language (Example)
double *C;   C = malloc(sizeof(double)*m*n);

n

C[1][3]

C[1*n+3]

In this case, an element Ci,j is C[i*n+j]



Two Data Formats

 We have more choices for 3D, 4D… arrays

[Q] Does the format affect the execution speed?
24

Row major format
• More natural for C 

programmers

Column major format
• BLAS library
• mm sample uses this

Ci,j⇒C[i*n+j]

Ci,j⇒C[i+j*m] m

n



Actual Codes in mm Sample
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for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {
Ci,j += Ai,l * Bl,j;

} } }

for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {
double blj = B[l+j*ldb];
for (i = 0; i < m; i++) {

double ail = A[i+l*lda];
C[i+j*ldc] += ail*blj;

}}}

IJL order

Changed to JLI order
(a bit faster)

=k

=m
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Time Measurement in Samples
 gettimeofday() function is used
 It provides wall-clock time, not CPU time
 Time resolution is better than clock()
#include <stdio.h>
#include <sys/time.h>

:
{

struct timeval st, et;
long us;
gettimeofday(&st, NULL); /* Starting time */

・・・Part for measurement ・・・
gettimeofday(&et, NULL); /* Finishing time */
us = (et.tv_sec-st.tv_sec)*1000000+

(et.tv_usec-st.tv_usec);
/* us is difference between st & et in microseconds */

}



If You Have Not Done This Yet
Please do the followings as soon as possible
 Please make your account on TSUBAME
 Please send an e-mail to ppcomp@el.gsic.titech.ac.jp
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Subject: TSUBAME3 ppcomp account
To: ppcomp@el.gsic.titech.ac.jp

Department name:
School year:
Name:
Your TSUBAME account name:

Then we will invite you to the TSUBAME group, please click URL
and accept the invitation
その後、TSUBAMEグループへの招待を送ります。メール中のURLを
クリックして参加承諾してください
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Next Class：
Introduction to OpenMP
 Shared memory parallel 

programming API
 Extensions to C/C++, 

Fortran
 Includes directives& library 

functions
 Directives：#pragma omp ~~

int i;
#pragma omp parallel for

for (i = 0; i < 100; i++) {
a[i] = b[i]+c[i];

}
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