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Mathematics and astronomy in the Islamic World
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(From Jacquart (2005) (in French))
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(1) Astronomy and daily life of Muslims

Basically, when new crescent moon is observed in the western sky in
the evening, a new Islamic lunar-month begins from the sunset. So,
the observation of the moon is very important. One year consists of
12 lunar months regardless seasons.

There are five prayers called “salat” daily, and time keeping is very
important for muslims. So, several sundials and water clocks were
made.

There is an interesting record of the prayer time in the East India (now Indonesia) in
the early 20th century (Izutsu, Toshihiko GEf&#82), 1942: Higashi-Indo ni-okeru Kaikyo
Hoser (CGRENEIZHN T 2 A ZiEH], Islamic Law in East India, in Japanese), Tokyo,
Toa-kenkytijo (R HALAFZEFT), (also reissued in his Arabia Tetsugaku (7 7 &7 ¥, Arabic
Philosophy, in Japanese), Tokyo, Keio University Press (BEEZZANFHINE), 2011),
pp.29-30), as follows.

(1) zuhr (after the time when the sun is going to move from its highest point and
before the shadow becomes the same length (or double length) as the height of
itself): Starting from 12 noon in East India (while starting shortly after 12 AM in
Mecca).

(2) fasr (in the afternoon after zuhr and before the sun is going to set): Done around
half past 4 PM in East India (while done about 3 hours after zuhr in Mecca).

(3) maghrib (after complete sunset within evening twilight): Done around 6 PM in
East India (while done right after sunset in Mecca).

(4) sisha (at night after evening twilight and before morning twilight (before
sleeping)): Done around half past 8 PM in East India (while done about two hours
after maghrib in Mecca).

(5) subh (after isha and before sunrise): Done between 4 AM and 5 AM in East India

(while done about one and a half hour before sunrise in Mecca).

The direction of the Ka‘ba in Mecca is called “Qibla”. The prayers
should be done towards this direction. So, mathematical geography
developed in the Islamic World.

It may also mentioned here that arithmetic and algebra were used for inheritance in the Islamic
World.



(11) Mathematics in the Islamic World

(A) Numerals and arithmetic

The Indian system of numerals (decimal place value system with a symbol of zero) was
introduced into the Islamic World around the 8" century or so.  The following is the modern Arabic

numerals.

Modern Arabic numerals:
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Al-Uglidist wrote The Book of Chapters on Hindu Arithmetic
(952-953 CE), and used decimal fractions (probably for the first time).
For example, in the case of 163.85, a short vertical mark was placed
above “3”. (See below.)
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§ 3. The Discovery of Decimal Fractions

Today we use not sexagesimal but decimal fractions to represent the
fraction remaining after a division, and it now appears these were a contri-
bution of the Islamic world. Evidence for this claim is contained in The Book
of Chapters on Hindu Arithmetic, written in Damascus in the years A.D.
952-953 by Abu’l-Hasan al-Uglidisi. The name “al-Uqlidisi” indicates that
the author earned his living copying manuscripts of Euclid (“Uqlidis” in
Arabic), but beyond this we know nothing of the life of a man who seems to
have been the first to use decimal fractions, complete with the decimal point,
and therefore the first to write numbers as we do. Since al-UglidisT specifi-
cally states in the preface to his book that he has taken great pains to include
the best methods of all previous writers on the subject, it is hard to be sure
that decimal fractions were his own discovery, but their complete absence in
Indian sources makes it fairly certain that they were a discovery of Islamic
scientists.

Al-Uglidis is also proud of the fact that he has collected ways of perform-
ing on paper, with ink, algorithms usually performed by arithmeticians on
the dust board, and in his Book of Chapters he gives the following reasons for
abandoning the dust board in favor of pen and paper.

Many a man hates to show the dust board in his hands when he needs to use
this art of calculation (Hindu arithmetic) for fear of misunderstanding from
those present who see it in his hands. It is unbecoming him since it is seen in the
hands of the good-for-nothings earning their living by astrology in the streets.

It seems that the street astrologers could be recognized by their use of the
dust board, and al-Uqlidist urges the use of pen and paper to escape being
taken for a mendicant fortune teller.

Al-Uglidist’s text contains four parts, of which the first two deal with the
elementary and advanced parts of Hindu arithmetic, but it is in the second
part where decimal fractions first appear. This is in the section on doubling
and halving numbers, where he introduces them as one of the three ways of
halving an odd number. The first way is the one described by Kashyar who,
to halve 5625, considered it as degrees or dirhams and wrote the result as in
Fig. 2.3, where the lower 30 could be interpreted as fuliis or minutes. The
second way is one al-Uglidisi calls numerical, and describes as follows:

... halving one in any place is five (in the place) before it, and this necessi-
tates that when we halve an odd number we make half of the unit five before it
and we put over the units’ place a mark by which we distinguish the place. So

(From Berggren (1986), pp.36 — 37)
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Fig. 2.6

the value of the unit’s place is tens to that before it. Now the five may be i.xalved
just as whole numbers are halved, and the value of the units’ place in the
second halving becomes hundreds and this may continue indefinitely.

When al-Uglidisi writes of places in a numeral being ““before” other
places he is referring to the direction of Arabic writing, which is from right to
left. Thus in 175 the 5 would be before the 7. As an example of what he has
explained al-UglidisT gives the results of halving 19 five times as 059}7?,
where, he says, “the place of the units is hundred-thousands to what is in
front of it”. Figure 2.6 shows the Arabic text of al-Uqlidisi’s work and the
use of the decimal point (in the form of the short vertical mark pointing out
the unit’s place). If the reader uses the forms of the numerals given earlier, he
will have no trouble identifying the various numerals in that figure.



(B) Algebra

The famous mathematician al-Khwarizmi (ca.780 — ca.850 CE) wrote The Condensed Book

on the Calculation of al-Jabr and al-Mugabala.

This is a widely circulated work of algebra.

The word “al-jabr” means the operation of restoring a quantity subtracted from one side of

the equation to the other side to make it positive, and is the origin of the modern word

“algebra”. The word “al-muqgabala” means replacing two terms of the same type, but on

different sides of an equation, by their difference on the side of the larger. (See below.) The

author’s name “al-Khwarizmi” was transliterated as “Algorismus” in Latin, and this is the

origin of the modern word “algorithm”.
§3. Al-Khwarizmi’s Algebra

The Name “Algebra”

Out of this dual heritage of solutions to problems asking for the discovery
of numerical and geometrical unknowns Islamic civilization created and
named a science—algebra. The word itself comes from the Arabic word
“al-jabr”, which appears in the title of many Arabic works as part of the
phrase “al-jabr wa al-mugabala”. One meaning of “‘al-jabr” is “‘setting back
in its place” or “‘restoring”, and the ninth century algebraist al-Khwarizmi,
although he is not always consistent, uses the term to denote the operation of
restoring a quantity subtracted from one side of the equation to the other
side to make it positive. Thus replacing 5x + 1 =2—3x by 8x+1=2_
would be an instance of “al-jabr”. The word “wa” just means “and”, and it
joins “al-jabr” with the word “al-mugabala”, which means in this context
replacing two terms of the same type, but on different sides of an equation,
by their difference on the side of the larger. Thus, replacing 8x + 1 =2 by
8x = 1 would be an instance of “‘al-muqgabala”.

Clearly, with the two operations any algebraic equation can be reduced to
one in which a sum of positive terms on one side is equal either to a sum of
positive terms involving different powers of x on the other, or to zero. In
particular, any quadratic equation with a positive root can be reduced to one
of three standard forms:

px:=gqx+r, px*+r=gqx, or px*+gx=r, withp,q,rallpositive,

a condition that runs through the whole medieval period in Islamic math-
ematics. We shall meet it again in the work of “Umar al-Khayyami, and it is
the rule in Western mathematics as well through the early sixteenth century.
Thus the science of “al-jabr wa al-mugabala” was, at its beginning, the
science of transforming equations involving one or more unknowns into one
of the above standard forms and then solving this form.

Basic Ideas in Al-Khwarizmi’s Algebra

One of the earliest writers on algebra was Muhammad b. Miisa al-
Khwarizmi, whose treatise on Hindu reckoning we referred to in Chapter 2.
His work on algebra, The Condensed Book on the Calculation of al-Jabr wa
al-Mugabala, enjoyed wide circulation not only in the Islamic world but in
the Latin West as well.

According to al-Khwarizmi there are three kinds of quantities: simple
numbers like 2, 13 and 101, then root, which is the unknown, x, that is to be
found in a particular problem, and wealth, the square of the root, called in
Arabic mal. (A possible advantage of thinking of the square term as repre-
senting wealth is that al-Khwarizmi can then interpret the number term as
dirhams, a local unit of currency. Another word used for “root” by many
writers is “thing”. In these terms al-Khwarizmi could list the six basic types
of equations as:

(1) Roots equal numbers (nx = m).

(2) Ml equal roots (x* = nx).

(3) Mal equal numbers (x> = m).

(4) Numbers and mal equal roots (m + x* = nx).
(5) Numbers equal roots and mal (m = nx + x4
(6) Mal equals numbers and roots (x* = m + nx).

All equations involving only the three basic quantities and having a positive
solution could be reduced to one of these three types, the only ones with
which al-Khwarizmi concerns himself.



Al-Khwarizmi’s Discussion of x? + 21 = 10x

In following al-Khwarizmi’s discussion of type (4) above we shall use
modern notation to render his verbal account. He discusses this type in terms
of the specific example x? + 21 = 10x, which he describes as “mal and 21
equals 10 roots”, as follows (translation adapted from F. Rosen):

Halve the number of roots. It is 5. Multiply this by itself and the product is
25. Subtract from this the 21 added to the square (term) and the remainder is 4.
Extract its square root, 2, and subtract this from half the number of roots, 5.
There remains 3. This is the root you wanted, whose square is 9. Alternately,
you may add the square root to half the number of roots and the sum is 7. This
is (then) the root you wanted and the square is 49.

Notice that al-Khwarizmi’s first procedure is simply a verbal description

of our rule
10 10?2
5~ (—2) - 21,

and his second procedure describes the calculation of 5+ /5% — 21, but
since all quantities are named in terms of their role in the problem whenever
they appear (For example, “5” is called “the number of roots’), his descrip-
tion of the solution is quite as general, if not so compact, as our

. n\?
=& s m.

In fact, al-Khwarizmi’s generality is reflected in the remarks that continue

le— X —fe— 21/x —>
Fig. 4.2

those quoted above:

When you meet an instance which refers you to this case, try its solution by
addition, and if that does not work subtraction will. In this case, both addition
and subtraction can be used, which will not serve in any other of the three cases
where the number of roots is to be halved.

Know also that when, in a problem leading to this case, you have multiplied
half the number of roots by itself, if the product is less than the number of
dirhams added to mal, then the case is impossible. On the other hand, if the
product is equal to the dirhams themselves, then the root is half the number of
roots.

In the first of the above paragraphs al-Khwarizmi recognizes that the case
we are dealing with is the only one where there can be two positive roots. In
the second paragraph he remarks that there is no solution when what we call
the discriminant is less than zero and he says that when (n/2)?> = m the only
soluticn is /2. Finally, he remarks that in the case px? + m = nx it is neces-
sary to divide everything by p to obtain x* + (m/p) = (n/p)x, which can be
solved by the previous method. This shows, by the way, that his coefficients
are not restricted to whole numbers.

What distinguishes al-Khwarizmi and his successors from earlier writers
on problems of the above sort is that, following the procedures for obtaining
the numerical solutions, he gives proofs of the validity of these same proce-
dures, proofs that interpret x* + 21, for example, as a rectangle consisting of
a square (x2) joined to a rectangle of sides x and 21/x (Fig. 4.2).

(From Berggren (1986), pp.102 - 104)

After al-Khwarizmi, algebra further developed in the Islamic World.



(C) Geometry

The Greek works of geometry, the Elements of Euclid, Archimedes’
works, the Conics of Apollonios, etc., were translated into Arabic, and
were studied and developed in the Islamic world.

The Greek original text from vol.5 through vol.7 of Apollonios’
Conics was lost, and only its Arabic translation is extant.

The conic section is very important in astronomy. For example, the
loci of the tip of gnomon shadow are hyperbolas (or a straight line on
equinoctial days), and appear in horizontal sundials. (See below.)
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Plate 3.1. Diagrams of a sundial for the latitude of Cairo and a universal sundial in a fifteenth century Egyptian treatise on sundial theory by
the muwagqgit al-Karadisi. (A muwaggit is a person who determines the times of prayer in Islam.) The two hyperbolas represent th? paths qflhe
shadow of the pointer (migyds) at the two solstices. (Taken from MS Cairo Dir al-kutub riyada 892. Courtesy of the Egyptian National
Library.)

(From Berggren (1986), p/86)

(D) Plane trigonometry

In ancient Greece, the relationship between chord and arc of a circle was used for
astronomical calculations. In India, the relationship between a half chord and its

corresponding arc was used for astronomical calculations. It is the origin of trigonometry.



The half chord is called “jya” or “jiva” in Sanskrit. It was
transliterated as “jayb” in Arabic, and then translated as “sinus” in

Latin. This is the origin of the word “sine”.

The trigonometry was well developed in the Islamic World.

§4. Nasir al-Din’s Proof of the Sine Law

Nasir al-Din introduces the Sine Law for plane triangles to provide a
basic tool for solving them, and in this section we shall see how he proves the
law and how he applies it to find unknown parts of triangles from known
ones.

The Sine Law. If ABC is any triangle then ¢/b = Sin C/Sin B.

Figure 5.11 illustrates the case when one of the angles B or C is obtuse,
and Fig. 5.12 the case when neither B nor C is obtuse, so that one of them is
acute. In either case prolong CA to D and BA to T so each is 60 units long
and, with centers B, C, draw the circular arcs TH and DE. If we now drop
perpendiculars TK and DF to the base BC, extended if necessary, then
TK = Sin B and DF = Sin C. (In the case of Fig. 5.11 both of these state-
ments are obvious, but in the case of Fig. 5.10 the reader must remember that

T
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Sin(¥ B) = Sin(180° — ¥B).) Now draw AL perpendicular to BC. Since
triangles ABL, TBK are similar AB/AL = TB/TK, and since triangles ACL
and DCF are similar, AL/AC = DF/DC but DC = 60 = TB, so, if we multi-
ply the left and right sides, respectively, of these two proportions, we obtain
the proportion AB/AC = DF/TK. Therefore ¢/b = Sin C/Sin B, and this
proves the Sine Theorem.

Since Nasir al-Din’s sine function is simply 60 times the modern one, the
above theorem holds for the modern function as well. We may re-write the
theorem as ¢/sin C = b/sin B = a/sin A, a form it is often given in today, and
it may be most easily remembered as the statement that in a given triangle
the ratio of any side to the sine of the opposite angle is cons ‘ant.

(From Berggren (1986), pp.138 — 139)

(See the following example.)



(E) Spherical trigonometry

In ancient India, only plane trigonometry was used for spherical astronomy. In
the Islamic World, spherical astronomy was started to be used.

The following is an application of the spherical trigonometry to the
determination of Qibla as an example.

Finding the Direction of Mecca

Until now we have always looked to the heavens for inspiration or con-
text for spherical trigonometry. Ironically, it was a religious concern that
diverted the eyes of trigonometers downward to the Earth. The practice
of Islam requires the faithful to perform five tasks, known as the “Five
Pillars” Astronomers cannot help much with three of them (profession
of faith, alms, and the hajj—the pilgrimage to Mecca). The other two—
fasting during daylight hours during the month of Ramadan, and the
five daily prayers—require technical assistance if they are to be obeyed
strictly. Consider the monthly fast. The Arabic calendar is lunar, so each
month begins when the lunar crescent reappears from behind the Sun
after New Moon. Miss the crescent on a particular day, and you may
end up violating the fasting requirement unawares. Muslim scientists
worked hard attempting to predict the first appearance of the lunar cres-
cent, with varying degrees of success.

But scientists were really able to justify their incomes with the times
of prayer, which are regulated by the position of the Sun in the sky.
When the moment occurs, worshippers are enjoined to face the Ka‘ba,
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Figure 4.5. The Ka‘ba, the most sacred site in Islam and destination of the hajj
(pilgrimage). © iStockphoto.com / Aidar Ayazbayev.

the most sacred site of Islam. The Ka‘ba, a cubical building (figure 4.5)
that houses the Black Stone, is the destination of the pilgrimage that
Muslims are asked to embark upon once in their lives. The direction of
the Ka‘ba—the gibla—serves several purposes besides the daily prayers,
including determining the direction in which Muslims should face when
they are buried. Modern technology is challenging the meaning of the
qibla; a conference met in 2006 to decide the direction of prayer while
in space. In practice, however, the injunction to face Mecca has not been
taken as seriously as the scientists might have liked. Legal scholars often
carried more weight than scientists, which may account for the wide
variety of mosques’ actual orientations.



On the face of it the gibla does not seem difficult to calculate. Since
the positions of both Mecca and the worshipper are given, we know
the local latitude ¢,, ,, = 21.67°, and the difference in longitude. So we
would seem to have a right triangle on the Earth’s surface with values
for the lengths of the two sides adjacent to the right angle (figure 4.6).
Unfortunately, the bottom side representing the difference in longitude

Ghazna
¢, =33.58°
P {

Figure 4.6. The gibla problem.

Mecca

4, =2167° \
|

is not a great circle arc, but rather an arc of a circle of latitude. Thus the
shape in figure 4.6 is not even a triangle.

The earliest solutions to the gibla problem were approximate, even as
crude as assuming that figure 4.6 is actually a planar right-angled trian-
gle. Around AD 900 precise solutions based on spherical trigonometry
(originally, Menelaus’s Theorem) started to appear. As one might expect,
al-Biriints classic work of mathematical geography, Determination of the
Coordinates of Cities (from which we took his measure of the circumfer-
ence of the Earth), goes into the matter in some depth. He gives no less
than four precise solutions. Two of them apply constructions that go
beneath the surface of the sphere, and so might be influenced by Indian
methods. The other two probably use the latest spherical trigonometric
methods of al-Birtini’s time, such as the Rule of Four Quantities and the
Law of Sines. We're not quite sure of this assertion because al-Birini
simply states the relations needed to solve the problem, not telling us
precisely what theorems he used to get there.

All four of al-Birini’s methods determine the gibla for the city of
Ghazna, now Ghazni in eastern Afghanistan. In his time Ghazna was one
of the most important cities in the world: the capital of the Ghaznavid
Empire, a Persian dynasty that lasted two centuries and at its peak incor-
porated most of modern-day Iran, Afghanistan, Pakistan, and several
surrounding countries. To give the reader a taste of ancient and medi-
eval diagrams, we have reproduced al-Biranf’s diagram (with a couple of
trivial modifications) in figure 4.7. Although it looks two-dimensional,
appearances are deceiving. Imagine that you are looking directly down
on Ghazna from above the celestial sphere. All the curves on the figure
(even the two straight lines) are great circle arcs on the celestial sphere

A\ =27.37°

seen from above, so G is the zenith directly above Ghazna. The line con-
necting north and south through G, actually a great circle called the
meridian of Ghazna, passes through the north pole P; the outer circle is
Ghazna’s horizon. M is the point on the celestial sphere that an observer
at Mecca would perceive as the zenith. WM connects the west point on
the horizon to M, and extends to A on the meridian. PMB is the merid-
ian of Mecca.



N
(North)

equo[o‘
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Figure 4.7. Graphic of al-Birani’s determination of the gibla.

->Al-Birani’s geographical coordinates for Ghazna and Mecca
were ¢, =33.58°, ¢,,=21.67°, and a longitude difference of A1=
27.37°. Now ¢, is the altitude NP of the North Pole, the north-
ernmost segment of Ghazna’s meridian; but both NG and PC are
90°, so GC = ¢, =33.58". So the arc from the worshipper’s zenith
perpendicularly down to the equator is the local latitude. This fact
must also apply to the zenith of Mecca, so MB =g, =21.67". Fi-
nally, the difference in longitude is equal to the angle at the North
Pole between the two zeniths, so MPG = BC =27.37°. Now that
we have transferred all the data onto arcs in the diagram, we are
ready to begin the actual mathematics.

We shall use nothing but the Rule of Four Quantities. Starting with
configuration CAPMB we have S (See Le(nw.)

sinPM _ sinPB - sin(90°—¢,) _ 1
sinMA sinBC’ sin MA sinAA’

so sin MA = cosg,,sinAA, which gives the “modified longitude”
MA =25.29°. Our second configuration is WMACB, from which
we get

sin WM _ sin WA~ sin(90°~ MA) _ 1

sinMB  sinAC sing, sinAC’

so sinAC = simpM/cosm, and we have the “modified latitude”
AC=24.17. Then GA=GC — AC= ¢, —24.11'=9.47",

With the modified longitude and latitude in hand, we turn our at-
tention to the outer horizon circle for Ghazna, which is where the
qibla resides. It will take two steps. Firstly, from WMASD,

sinWM _ sinWA . sin90 = MA) _ 1
sinMD  sinAS sinMD sin(90° — GA)’

so sinMD = cos MA cos GA, which gives MD = 63.10°. Our final
step applies the Rule of Four Quantities to figure GMDSA:

sinGM _ sin GD or sin(90° — MD) 4 1

sinMA  sinDS sinMA sinDS’
50 sin DS = sin MA/cos MD. This gives us the gibla, because DS=
70.79° is the number of degrees west of south that we must turn to
face Mecca.=>



There is nothing special about Mecca in the above calculations. We
could use the same reasoning to find the direction to any destination. So
scientists now had a means to determine the direction from any place
on the Earth’s surface to any other. Granted, the calculations are not
simple, but once they are automated they work quite smoothly. Never-
theless a small industry arose to generate tables of the gibla for any lo-
cation within the Arabic-speaking world, so that the faithful would be
spared the pain of lengthy trigonometric calculation. The best of these
tables was a set composed by Shams al-Din al-Khalili, an astronomical
timekeeper employed by the Umayyad mosque in Damascus. Its sixteen

pages contain almost 3000 entries of the gibla for every degree of lati-
tude and difference in longitude for all Earthly locations that mattered.
The effort involved must have been Herculean.

e e = . — — — — — i — ——— — — —— — ——— —— i — —

A C
B

Figure 4.1. The Rule of Four Quantities and Abu Nasr’s second theorem.

- e¢= Abi Nagr Mansur ibn ‘Ali ibn
‘Iraq, al-Biranfs teacher and discoverer of the polar triangle. His origi-
nal work on the subject, the Book of the Azimuth, is preserved only by
a quotation in al-Biranis Keys to Astronomy. In it he proposes two new
theorems, both based on the same diagram (figure 4.1):

sinBD 2 sinAD

Rule of Four Quantities: >~——== P
sinCE sinAE

. inDF _ sinAD

Abii Nasr’s Second Theorem: 22— = I

) sinEF  sinAB

At first it appears that these theorems are nothing more than corollar-

ies to Menelaus, and in a mathematical sense they are.

Proof of the Rule of Four Quantities: Apply Menelaus’s conjunction

2 L .. 1 _ginAD
theorem to figure 4.1; we get —== ="

&)

(From Van Brummelen (2013), pp.66 — 71, and 59 — 60.)



(111) Historical development of mathematics and

astronomy in the Islamic World

(A)  The best days of the Abbasid Caliphate (around the mid-8"
century — around the mid-10" century)

From the mid-8" century, several Greek mathematical and astronomical works
were translated into Arabic. Thabit ibn Qurra (d.901 CE) translated several
important works.

In this period, al-Khwarizmi (ca.780 — ca.850 CE) wrote work on Indian system
of arithmetic, the famous work on algebra, etc.

Al-Battani (ca.858 — 929 CE) made accurate observations, and developed
Ptolemaic geocentric astronomy.

(B)  Development in Egypt and Spain besides West Asia (around the
mid-10" century — around the 12" century)
As-Suft (903 — 986 CE) wrote a work on Greek constellations with several figures.
(See below.)
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Ibn Yanus (d.1009 CE) made astronomical observations at Cairo, Egypt, and
made the astronomical work al-zzj al-Kabir al-Hakimz.

Ibn al-Haytham (ca.965 — ca.1039 CE) studied optics.

Al-Biriaint (973 — ca.1050 CE) wrote the astronomical work Masfudic Canon, and
some other astronomical works. And also, his India is a very important account
of Indian culture.

Al-Zargali (1029 — 1087 CE) made astronomical observations in Toledo, Spain,
and made the astronomical work Toledan Tables.

‘Omar Khayyam joined the work to compile a Persian solar calendar called
“Jalali calendar” (adopted from 1079).

(C) Development in Central Asia besides West Asia (around the
mid-13" century — around the mid-15" century)

Persian astronomer Nasir ad-Din at-Tasi (1201 — 1274 CE) made astronomical observations at
Maragha Observatory in Iran, and made the astronomical work Illkhanic Tables.

At-Tast’s disciple ash-Shirazi (1236 — 1311 CE) also developed astronomy.
Ibn ash-Shatir (1306 — 1375 CE) made the double epicycle model.

Apogee ‘/ Second Epicycle

Perigee

Equant Model Double Epicycle Model



Ulugh Beg (1394 — 1449 CE) made astronomical observations at his
Samargand Observatory.

The following is a conjectured picture of the Samargand Observatory (1420 CE).

(From Jacquart (2005), p.28)
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(D) Development in Turkey, Iran, India etc. (around the 16"

century — the 18/19™ century)

In this period, modern science developed in Europe etc., but Islamic traditional science also

developed in Turkey, Iran, India etc.

The following is a picture of the Istanbul Observatory in Turkey (the 16" century).
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(From Jacquart (2005), p.48)



Mathematics and astronomy in Medieval Europe

(1) Introduction of Arabic and Greek science into Medieval Europe
(12" — 13" centuries)
In the 12" — 13" centuries, Islamic science was introduced to West
Europe, and several Arabic texts were translated into Latin.
And also, Greek texts were introduced from Byzantine Empire, and
Greek texts were translated into Latin.

(11) Establishment of universities (from the 12" century)
From the 12" century, universities were created in Europe.

In their faculty of arts, seven liberal arts were studied.
Seven liberal arts:
“trivium”: grammar, rhetoric and logic,
“quadrivium”: arithmetic, geometry, astronomy and acoustic.
And also, Aristotelian philosophy (natural philosophy, ethics and metaphysics)
were studied.

After studying liberal arts, students could go to the faculty of theology, law or
medicine.

(111) Medieval European astronomy

Sacrobosco

Johannes de Sacrobosco (the first half of the 13th century) wrote the
Sphaera, which is a compendium of Ptolemaic astronomy. (The detail of
mathematical astronomy is not described there.) This work was widely
read.

Alfonso X

Alfonso X of Castile, Spain (reign 1252 — 1284) composed the Alfonsine
Tables. 1t was widely used.



Nicolaus Cusanus

Nicolaus Cusanus (1401 — 1464 CE) wrote in his De docta ignorantia
(1440) that the universe if infinite, and that there is no centre and the earth
may move.

Peuerbach and Johannes Miiller

Georg von Peuerbach (1423 — 1461 CE) and his disciple Johannes Miiller
(Latin name Regiomontanus) (1436 — 1476 CE) wrote the Epitoma in
Almagestum Ptolemaei (1496), which is a work on mathematical astronomy

(IV) Mathematics for commerce

Fibonacci

Leonardo da Pisa (= Fibonacci) (ca.1170 — ca.1250 CE) traveled several
places with his father who was a merchant, and studied mathematics. He
wrote the Liber abaci (1202), which is a systematic compilation of
mathematics at his time.

Schools of practical mathematics

From the end of 13th century to the beginning of the 16th century, there
were schools of practical mathematics for commerce ete.

Luca Pacioli

Luca Pacioli (ca.1445 — 1517 CE) wrote the compilation of mathematics
Summa de Arithmetica, Geometria, Proportion et Proportionalita (1494). It
is well known for its description of bookkeeping.

(V) Mechanics (14th century)

Some people were trying to overcome Aristotelian mechanics.

One is Thomas Bradwardine (ca.1290 — 1349 CE) of Merton College of
Oxford University.

Others are Jean Buridan (ca.1300 — ca.1358 CE) and Nicole Oresme
(ca.1320 — 1382 CE) of the University of Paris.



They used mathematics for the study of mechanics.

(VI) Quantification of music

The mathematical theory of musical scales was already developed since ancient

Greece. In ancient Greece, music was monophony, and its rhythm need not be

mathematical. The following is an example of the medieval monophonic music

Gregorian chant.
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(From Toeda, Masako: +HIE7 (ffi%) [7 L=V 7 HH%RE] (Cantus Gregoriani

Selecti) . ¥ /X712, 2004, p.203.)



From the 9th or 10th century, polyphony was made, and the theory of rhythm was
developed since the second half of the 13th century. In order to express rhythm, “black
mensural notation” (the 14th century — the mid-15th century) and “white mensural
notation” (the mid-15th century — the late 16th century) were used in the early period.
The following is an example of the “white mensural notation” of Ave maris stella of

Josquin des Prés (ca.1440 — 1521).
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(VII) Geometry for drawings

At the time of Renaissance (around the 14th — 16th centuries), fine art was highly
developed. In order to draw realistic pictures, “perspective” was developed. It is a
kind of applied geometry. Early theory of perspective was developed by Brunelleschi
(1377 — 1446 CE) and Alberti (1404 — 1472 CE).

In a manuscript written by Piero della Francesca (1418? — 1492 CE), the method of

perspective is clearly explained. (See Fig.1 below.)
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(From: Yokoyama, Tadashi: #5[L1E (fgai, #ER, W) [7—n - U0 U7 UwE,
ZZROR RO, 747 b= OFEFKE 1505], U 7 rAR— |, (1981), p.81)

In the above Fig.1, a square fghi on a ground bcde is drawn. Firstly, a vertical
square bed’e’is drawn, and a reversed square fg’A7’is drawn in it. Then, as in Fig.2,
from the point A (which corresponds to the point 1), two sets of lines are drawn:

1: A=P= Q.
2: A= Q=>R=S8= ().
The cross point (A) corresponds to the point 7in Fig.1.



The following is from De artificiali perspectiva (1505 CE) of Viator
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ZEMOFE RO, 747 b= OFEHKE 1505], U 7 rAR— |, (1981)



The following is from a text book of drawing (1525 CE) by Dithler 81471 — 1528 CE).
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(From: Yokoyama, Tadashi: #[L1E (fga, FER. W) 77— - U4 U7 U #EE,
ZZMOR RO, 747 b—LOFERXE 1505], U 7 vR— kK, (1981), p.68)

Dihler’s method to draw ellipse and parabola:
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(From: —=jiifhde Mo EL], Mk KFEHF RIS, 2013, p.152)



From a manuscript of Leonard da Vinci (1452 — 1519 CE)
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(From Leonard da Vinci, The Complete Works, UK, David & Charles, 2006, p.355)



(VIII) Navigation

Columbus (1451 — 1506) arrived at America in 1492 CE. At that time latitude could
be determined by astronomical observations, but longitude could not be determined

accurately. So, it was usual to sail westwards or eastwards keeping the same latitude.
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Columbus’s approximate routes are marked in both directions for the first, second, and fourth voyages. Only his outbound
route is marked for the third voyage, because he returned to Spain under arrest, rather than in command of the voyage.
(Map prepared by the Cartography Laboratory, Department of Geography, University of Minnesota.)

(From Phillips and Phillips: The Worlds of Christopher Columbus, Cambridge,
Cambridge University Press, 1992, p.2)

At that time, magnetic compass, quadrant, and mariner’s astrolabe were used for
navigation.

The altitude of heavenly bodies, when they cross the meridian, was observed to obtain
latitude. For example, the altitude of the celestial north pole of the altitude of the
midday sun at equinoctial days corresponds to the latitude of the observer. If the

observation of the sun is made in days other than equinoctial days, the result is
corrected by the sun’s declination.



The quadrant and the mariner’s astrolabe:
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Abb. 25. See-Astrolab C. Plath, 1862—1962 Seite 56. Die Abbildung
eines alten spanischen Gerdts befindet sich auf dem Umschlag.

(From: Freiesleben, Hans-Christian: Geschichte der Navigation, Wiesbaden, Franz

(There is a Japanese translation of this book: 7 7 4 =& L—~_ (BARE =FR) [T
DIEH], HHEIE, 1983)



(IX) Cartography

Martin Behaim (1459 — 1507) made the first terrestrial globe in 1492.

25 AN LOBIBEOHFE

Behaim’s globe (From: #kH M [HIEORES ], SEFRALFATSCRE, 2018, pp.76 — 77)

Mercator (1512 — 1594) devised Mercator’s projection, and made maps.
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Appendix ----- The principle of astrolabe

The astrolabe is a sophisticated instrument for the observation of the altitude of
heavenly body, and the graphical astronomical calculations for, for example, the

determination of time etc. The astrolabe is originated in the ancient Hellenistic World,

and well developed in the Islamic World etc.

(From Jacquart (2005), p.59 etc.)

La plaque de base, ou
«mere », d'un astrolabe
donne sur son rebord
extérieur, terminé par
1'anneau de suspension,
les degrés du cercle. Les
disques, ou « tympans »
(quatre ici), s’empilent
sur la « mére », porteurs
des coordonnées d'une
latitude déterminée.
Est ensuite superposée,
trés ajourée, la carte
céleste, ou «araignée ».
Percées d'un trou
central, ces différentes
parties sont maintenues
par un pivot, qui porte
sur le dos de l'astrolabe
une régle de visée,
I'«alidade ».

59 Astrolabe construit
par ibn-Khalaf al- Iraqi,
Irak, X< si¢cle. BnF, Paris.

The following is from Ohashi (1997).
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a) The astrolabe and the stereographic projection

The astrolabe is a disklike instrument to observe the altitude of a heavenly body, and

calculate time, Jagna, etc. graphically.® (see Fig.1.)

Tl\e ASTl‘oio.be,

Fig. 1
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On the front side of the astrolabe is a disc (or discs changeable for different latitudes),
on which the Tropic of Cancer, the equator, the Tropic of Capricorn, the horizon, the
parallels of altitude, the vertical circles, the hour circles etc., for the observer’s latitude, are
drawn by the stercographic projection. Above this disc is put a spider which has the ecliptic
circle and some pointers of fixed stars. This spider can be rotated around the centre of the
disc which is the projection of the celestial pole.

The back side of the astrolabe is usually divided into four quardrants, each of which
is used for graphical calculation etc. On the back side is attachcd an alidade in order to
obscrve the altitude.

The stereographic projection® is a projection of a sphere from one of its points S onto
the plane ¢ which is parallel to the tangent plane of the point S (see. Fig. 2) .The
stereographic projection has two important properties, Viz :

S

The ngreosmfkic PrajecTion
Fig. 2
(1) The preservation of circles :

The circles lying on a sphere are projected onto the plane as circles or, if the circles
on the sphere pass through the projection centre, as straight lines.

(2) Conformality :

The stereographic projection maps the angles between the curves lying on a sphere
as equal-to-them angles between the curves projected onto the plane.

For the convenience of later discussions, let us briefly review the proof of these two
properties.’

Proof of the first property :

Let AB be a diameter of a cirole (see Fig. 3) and CD be a perpendicular dropped



204 INDIAN JOURNAL OF HISTORY OF SCIENCE

from an arbitrary point C on the circle onto the diameter AB. Then, from Euclid (vi.8),
we have the following equation :

AD-DB=CD’. = = e (1)

Fig. 3

and conversely, if this equation holds for any pont Con a curve for a segment AB,

the curve is a circle.

A

Fig. 4

Now (sce Fig. 4), let us consider an oblique circular cone with a vertex A and the
base whose diameter is BC, where the straight line BC produced meets the point M which
is the foot of the perpendicular dropped from the vertex A onto the plane of the base. Let
G be an arbitrary point on the straight line AB. Now, cut the cone by a plane (GHF)
which is perpendicular to the plane ABC and passes through the point G in such a way
that the angle AGF is equal to the angle ACB, (hence AFG=ABC also), where F is an
intersection of this plane (GHF) and the straight line AC. Then the curve GHFis a circle®.
Let us prove this fact.

Let H'be an arbitrary point on the curve GHF, and Jbe the foot of the perpendicular
dropped from point A onto the straight line GF. Let a segment KL be the perpendicular
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dropped from an arbitrary point K on the circle BKC onto its diameter BC. Then :
HI 7KL, e )

because both are perpendicular to the plane ABC.
Now, draw a segment DE, which passes through the point J, in such a way that :
DE#/BC. e 3)

Then, from (2) and (3), the planec DHE is parallel to the planc BKC. Hence the curve
DHE is a circle. Applying the equation(1), we have :

DIJE =HJ? = ceeeaeee 4)
Now. from (2),

A A
ADE = ABC, and

A A
AED = ACB-
And also,
A A
AGF = ACB, and
A A
AFG = ABC.
Therefore,
A A
GDJ = EFJ, and
DGJ = FEJ.

Since DJAG = F}E. two triangles DJG and FJE are similar, Therefore :
GJl/ DI =JE/JF,

or,
DJJE = GJJFF e (&)

From the equations (4) and (5), we have :

GJJF = HJ*,

for an arbitrary point /1 on the curve GHF. Therefore, considering the equation (1), the
curve GHF is a circle.

Lastly, let us consider a stereographic projection of a circle (whose diameter is MN)
from the point S onto the plane o, where the plane © tangents to the point §* which is
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S
M
N (0-
M N s
Fig. 5

diametrically opposite to S. (see Fig. 5) Let the segment MN be a diameter of the circle
lying on the plane of the great circle which passes through the point S and the centre of
the circle. And also, let M" and N’ be the projections of the points M and N respectively
onto the plane . Then, two right-angled triangles SMS’ and SS°M’” with a common acute
angle MSS’ are similar, and :

SM/SS' =88 /SM’,

or.

SM -SM’ = (§8°). - (6)
Similarly,

SN-SN' =(88)". = - €))

From the equations (6) and (7), we have :

SM -SM’ = SN - SN',

1l

or

SM/SN = SN/ SM".

Il

So, two triangles SNM and SM'N’ with a common acute angle MSN are similar.
Hence.

A A
SMN= SN ‘M’, and
SNM= SM'N'. }
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If we consider an oblique circular cone with the vertex S and the base whose diameter
is MN, it is clear from (8) that its section by the plane G is a circle whose diameter is
M'N'.

Hence the first property of the stereographic projection has been proved.

Proof of the second property:

The angle between two curves is the angle between their tangents at their intersection.
Let a point M be an intersection of two curves on the celestial sphere whose tangents at

7
\\\
/ 0\

the point M are MK and ML respectively. (see Fig. 6.) Let the plane ¢ tangent the point
S” which is the opposite of the origin of the projection S. And let M’ be the projection of
the point M from the point S onto the Plane 6. And also, let M’Qand M’R be the tangents
of the two projected curves at the point M. Let us make a plane © which tangents the
point S. And let K and L be the intersections of the plane m with the aforesaid straight
lines MK and ML.

Fig. 6

Since two tangents to a sphere from the same point arc equal, we have:
KS = KM, and
LS =ILM

Hence, two triangles KSL and K}/L with the common side XL are mutually equal.
Therefore:

A A
Bisus 9)
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Now, we can consider that the tangents M'Q and M'R are the projections of the
tangents MK and ML. So. the straight lines M'Q and M'R are the intersections of the
plane o with the plancs KSM and LSM respectively, and we have:

SK // M'Q, and

SL ## M'R.

Therefore:

EE=0lR - e (10)

From the equations (9) and (10), we have:

KML = QM'R.

Hence the second property of the stereographic projection has been proved.
b) The construction of the astrolabe

On the front side of the astrolabe is attached a disc or discs which can be changed
according to the observer’s latitude. On the disc is attached a spider which can be rotated

®
A\ ¢
@%@% :

Spider‘ DiSCS Mother Alidade

ComFonents of  the astrolabe

Fig. 7
around the centre of the disc. On the back side of the astrolabe is attached an alidade in
order to observe the altitude of a heavenly body. (see Fig. 7.)
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The celestial sphere is projected onto the disc from the celestial pole by the
stercographic projection. The disc represents horizontal coordinates. The spider, which is
a net-like object, has an ecliptic circle and some indicators of fixed stars. The spider
represents ecliptic coordinates. Therefore, the rotation of the spider is equivalent to the

diurnal rotation of the celestial sphere.

Usually the celestial sphere is projected from the south celestial pole onto the disc.
In this case, the centre of the disc is the projection of the north celestial pole.

Since the positions of the horizon, parallels of altitude etc. in the equatorial coordinates
are different at different latitudes of the observer, one disc with the projection of the
horizontal coordinates by the aforesaid method can be used at a particular latitude only. So
several discs should be prepared if the astrolabe is to be used at different places.

(From: Ohashi, Yukio: “Early History of the Astrolabe in India”, Indian Journal of History of
Science, 32(3), 1997, 199-295; pp.202 — 209)

Principle of the asreolabe
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