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I. Introduction

The history of Indian astronomy can roughly be summarised as follows. [For an overview
of Indian astronomy, see Ohashi (1998) in Japanese or more detailed Ohashi (2009) in English.]

(i) Indus valley civilisation period.

(i) Vedic period. (ca.1500 BC — ca.500 BC).

(iii) Vedariga astronomy period. (From sometime between the 6th and 4th centuries
BC up to sometime between the 2nd and 5th centuries AD?).

(iv) Period of the introduction of Greek astrology and astronomy.

(v) Classical Siddhanta period (Classical Hindu astronomy period). (From the end of
the 5th century up to the 12th century AD).

(vi) Coexistent period of the Hindu astronomy and Islamic astronomy. (From the
13/14th century up to the 18/19th century AD).

(vii) Modern period (Coexistent period of the modern astronomy and traditional
astronomy). (From the 18/19th century onwards). -

This paper is a continuation of my paper presented at the 7th International
Conference on Oriental Astronomy (Tokyo, 2010) [See Ohashi (2011)], in which the Vedariga
astronomy was mainly discussed. In this paper, I would like to discuss some topics in
the Classical Hindu astronomy period. In this period, geometrical models were used
for planetary orbits, but Indian models are somewhat different from Greek models. I

shall discuss some special features of the Classical Hindu astronomy.

II. Classical Hindu Astronomy

(I1.1) Classical Hindu Astronomy period
In the 2nd (?) or 3t century AD, Greek horoscopic astrology was introduced into India,

and around the 4th (?) century AD, Greek mathematical astronomy seems to have been
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introduced into India. In the Classical Hindu Astronomy period (from the end of the
5th century to the 12th century AD), Indian astronomy did not receive apparent foreign
influence, and developed individually. In the Classical Hindu Astronomy, the eccentric

model and the epicyclic model have been used, but they are somewhat different from

Greek models.

The Classical Hindu Astronomy period produced several famous astronomers, such as,
Aryabhata (b.476 AD), Varahamihira (6% century AD), Bhaskara I (f1.629 AD),
Brahmagupta (b.598 AD), Lalla (ca.8th or 9% century AD), Vateévara (b.880 AD),
Maiijula (f1.932 AD), Sripati (f1.1039/1056 AD), Bhaskara II (b.1114 AD) etc. And also
the anonymous Sirya-siddhanta (ca.10th or 11th century AD) is a very popular Sanskrit
astronomical text of this period. Some of these works are still considered to be
authoritative by modern traditional Hindu calendar makers etc. The period during
which these classical astronomical works were composed can be called Classical
Siddhanta period or Classical Hindu Astronomy period. The “Siddhanta” is the

fundamental treatise of mathematical astronomy in Sanskrit.

(I1.2) Planetary models in the Classical Hindu Astronomy
(I1.2.1) The manda-correction and the sighra-correction

In the Classical Hindu Astronomy, geocentric epicyclic and eccentric systems are used.
The Mahabhéaskariva of Bhaskara I (7th century) treats the epicyclic and eccentric
systems as mathematically equivalent models for both of the manda-correction and the
Sighra-correction. [For its edited text with English translation, see Shukla (1960).]

Firstly, mean (madhya) planet, which is supposed to rotate constantly around the
earth, is calculated, and then, corrections are applied to the mean planet in order to
obtain the true (sphufa) planet. One correction is the manda-correction, which
corresponds to our equation of centre. The other is the $ighra-correction, which
corresponds to the annual parallax in the case of outer planets, and the planet’s own
revolution in the case of inner planets. Firstly, the manda-correction is applied to the .
mean planet, which corresponds to the planet’s own mean revolution in the case of outer
planets, and the sun’s mean revolution in the case of inner planets. The result is called
“manda-sphuta planet”, which is the mean planet corrected by the equation of centre
only. Then, the sighra-correction is applied to the “manda -sphuta planet”, and the true
planet is obtained. In the actual calculation, some special methods are used in the
classical texts, some of which will be discussed below.

We know that a Greek astronomer Apollonius (31 century BC) has shown the

equivalence of the epiciclic model and eccentric model in order to explain the planetary
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motion. (See the Almagest (XII.1) of Ptolemy. [For its English translation, see Toomer (1998).1)
In India also, they are treated to be equivalent. (See Fig.1.) The possibility of the
relationship between Apollonius and Indian astronomy is open to the future research.
It may be noted here that the “equant model” of Ptolemy was not used in India. If
the “equant model” is used, it will become inconvenient to use epicyclic model and
eccentric model mwaﬁmiv\. [The “equant model” is that a heavenly body does not move along its eccentric
orbit in uniform speed, but moves on its eccentric orbit around a point called “equant” with a constant angular
velocity. It is a good approximation of the Kepler motion, when the earth and the “equan” correspond to the foci.}
In the Classical Hindu Astronomy, a heavenly body basically moves along its orbit in
uniform speed, and both the epicyclic model and the eccentric model could be used

freely.

Eccentric model

Fig.1

(Heliocentric medel)

Epicyclic model

(I.2.2) The size of the epicycles in the Aryabhatiya

One interesting feature of the Aryabhatiya (AD499) of Aryabhata is that the size of
the epicycles of the planets changes in different anomalistic quadrants. [For its edited text
with English translation, see Shukla and Sarma (1976)] This is quite different from simple
geometrical model. The modern Sirya-siddhinta (ca. 10 ~ 11th century AD) etc. also
use similar method. [For its English translation, see Burgess (1935).]

According to the Aryabhativa, the mandaepicycles of the Mars, Jupiter and Saturn
are small in the 1st and 3 quadrants, and are large in the 2nd and 4th quadrants. The
manda-epicycles of the Mercury and Venus, and the sighra-epicycles of the five planets
are large in the 15t and 3¢ quadrants, and are small in the 27 and 4th quadrants.

According to the interpretation of Bhaskara I, their size given in the %&m@bm.&w\m is
the value at the beginning of each quadrant, and the size changes linearly. However,

there are other Hindu astronomers who interpret that the size is the value at the end of
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each quadrant.
In the case of the manda-epicycles of the Mars, Jupiter and Saturn, if the

interpretation of Bhaskara I is correct, it can be said that the change of the distance of
the planets becomes somewhat similar to that of the “equant model”. However, the
change of the dighraepicycles is not understandable. Further researches are
necessary.

In the Greek models, which is purely geometrical, the size of epicycle does not change,
and when apparent size of an epicycle had to be changed, the distance of the epicycle in
the same size was changed by certain mechanical model. On the contrary, Indian
models seem to be based on certain natural philosophy, in which certain power
influences heavenly bodies and produces certain physical effects.. In India, the size of
epicycles themselves could be changed. Therefore, Indian models should not be
understood as simple geometrical models. The Indian natural philosophy behind

Indian models should be investigated further.

(I1.2.3) Indian method of the manda-correction

The manda-correction is not based on a simple eccentric model, but a special
modification is applied. Its result is that the equation of centre in this method becomes
a simple sine function of anomaly. Its accuracy is slightly less than the simple

eccentric model, but their errors (in the opposite direction) are not so different.

Fig.2

Equation of centre in the

Q,wmmwomw Hindu Astronomy

In Fig.2, the point S corresponds to the heavenly body in the simple eccentric model
(In the figure, SK//AP, where A corresponds to the apogee, and P corresponds to the
perigee.). In the figure, S! corresponds to the heavenly body in the Hindu model.
Here, KS = DL = ¢ = 2e (e is eccentricity in modern sense), SL/KD, and the point S! is at
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the cross point of the straight lines KS and DR. Now, RT = SQ =¢e'sing. Therefore, §
=~ sind = RT = e-singp. So, we can say that the Hindu equation of centre is a simple sine
function of anomaly. This Hindu method is well explained in the Mahabhaskariya (IV)
of Bhaskara I (7th century).

As I have shown in the Appendix 1, the equation of centre of the simple eccentric
model and that of the true Kepler motion are:

0~ 2esing + 2e2%sin2¢p (simple eccentric model)
0 =2esing+ ,w.mw sin2¢ (true Kepler motion)
0~ 2esing (Indian method)

It is clear from the above equations that the second term of the simple eccentric model
is too large. The accuracy of the Indian method is not so different from that of the
simple eccentric model (in the opposite direction).

This Indian method is quite different from Greek method. The Ptolemaic “equant
model” (which was used for the deferents of planets in his theory), which is closer to the
true Kepler motion, has not been used in the Classical Hindu astronomy. The
possibility of the relationship between Pre-Ptolemaic Greek Astronomy and Classical
Hindu Astronomy is still open to the future research. Besides the apparent movement
of planets, the distance of planets was considered in India in their own way. The

Indian method is more physical or philosophical than Greek pure geometrical method.

(I1.2.4) The method in the Brahma-sphuta-siddbanta

The method in the Brahma-sphuta-siddhanta (AD 628) of Brahmagupta is very
Interesting. (For its Sanskrit text, see Dvivedi (1902).] Its process, except for the Mars, is as
follows. Firstly, the amount of the manda-correction is calculated from the mean
Em.:m? and is applied to the mean planet. The result is the manda-sphuta planet.
Secondly, the amount of the sighra-correction is calculated from the manda-sphuta
planet, and is applied to the manda-sphuta planet. The result is the true planet after
the first approximation. From the result, the amount of the manda-correction is
calculated, and applied to the original mean planet. From this result, the amount of
the sighra-correction is calculated and applied. The result is the true planet after the
second approximation. This process is repeated until a constant value is obtained.

In the case of the Mars, the above mentioned process is not used. The method for the
Mars is as follows. Firstly, a half of the amount of the manda-correction and a half of
the sighra-correction are applied, and the once corrected Mars is obtained. From the

result, the amount of the manda-correction is calculated, and its whole amount is
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applied to the original mean Mars. From this result, the amount of the
Sighra-correction is calculated, and its whole amount is applied. The result is the true
Mars. This method is the ordinary method used by other Indian astronomers in those
days for five planets.

It may be mentioned here that Brahmagupta did not use the above mentioned
successive approximation for the calculation of true planets in his Khanda-khadyaka
(AD 665), but used the ordinary method, like the case of Mars in his earlier work, for
five planets. [For its edited text with English translation, see Chatterjee (1970).]

The above mentioned process of the Brahma-sphuta-siddhanta, except for the case of
the Mars, means that the amount of the equation of centre is a function of the position
of true planet, and not of the position of mean planet. This fact shows that the Indian
model of planetary motion is not a simple imitation of the Greek geometrical model, and
further investigation of the Indian way of thinking is needed. At present, I suspect
that Indian astronomers in those days considered that the inequality of the
manda-correction is produced by a kind of physical force originated to the apogee, and
this force is equilibrated with the displacement of planetary position due to the
inequality. If so, the amount of the inequality should be a function of the actual
position of the true planet (instead of the mean position as in the Greek model).
Ancient Greek astronomers tried to make planetary models by geometrical
combinations of circles, due to the Greek (Platonic and Aristotelian) natural philosophy.
However, ancient Indian astronomers seem to have been free from that kind of
preconception. So, I suppose that ancient Indian astronomers tried to consider certain

physical reason behind the model.

(I1.2.5) The lunar theory in the Laghu-manasa

Maijula was an astronomer of the 10th century AD. His name is sometimes spelled
Muijala, but Kripa Shankar Shukla pointed out that Mafjula is his real name.

In the ancient Indian planetary theory before Mafjula, only the equation of centre
was considered. Maiijula considered another inequality “evection” for the first time in
India.

Mafijula composed the Laghu-manasa (932 AD). [For its edited text with English translation, see
Shukla (1990)] This is a karapa work (handy practical work of astronomy) of
mathematical astronomy. It is a small but very important work. It contains the
second correction for the moon. [The first correction is the equation of centre.] According to
Yallaya’s commentary (1482 AD) on the Laghu-manasa, this correction is originated

from Vateévara’s work (early 10th century). The statement of Yallaya has not been
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confirmed by Vate§vara’s extant works.

According to K.S.Shukla’s commentary in his edition of the Laghu-manasa, Mafjula’s
second correction for the moon can be expressed as follows:

144'26” cos(8-U) sinM-S) e (A)
where S, M, and U are the true longitudes of the sun, moon, and the moon’s apogee
(mandocca) respectively. Shukla pointed out that this is a combination of the “deficit of
the equation of centre” and the “evection”.

We can understand this expression as follows. From the equation (8) in my
Appendix 3, the eccentricity looks £~ e —L mecos 2§, and if it is obtained from the
observation of lunar eclipses (like Hipparchus etc.), when £ is 180°, the eccentricity
looks £ =~ e —2 me, and the equation of centre looks 2(e — 2 me)sing. Here,
2x 12 mesing corresponds to the “deficit of the equation of centre”. Then:

“deficit of the equation of centre” = L mesinp e B)

“evection” = ¥ mesin@¢ (©)

Maifijula’s second correction corresponds to the sum of (B) and (C).

B)+(C) = L me{sing + sin(2E—)}

= L mex2{sin-cos(p-O)}
S me{sin(I30)-cosGt-A)} e (D)
If we use the notation of the expression (A), the expression (D) can be expressed as:
B)+(C) = £ me {sin(M-S)-cos(S-U)}

This expression corresponds to the expression (A). From this fact, we know that

H

Maifijula’s second correction is justified. Mafijula’s way of thinking might have been

different from Ptolemy, and we should investigate his method further.

III. Conclusion

After receiving the influence of Greek astronomy, the Classical Hindu astronomy was
created, and the eccentric model and the epicyclic model were used there. However,
Indian methods are not simple wsu.;maobm of Greek geometrical models, and there are
several differences. It seems to me that ancient Hindu astronomers tried to consider
certain physics (or natural philosophy), which is different ?05. Greek philosophy,
behind the model. Further investigation of the special feature of the Classical Hindu
astronomy is needed. We should investigate their way of thinking (which may be

called their natural philosophy) behind their theory.

— 26 —

S A S s S B

Appendix 1, The accuracy of the Simple eccentric model

Fig.3

Heavenly
P body ) P

(29Bedy)

(Perigee)
<

(Centre) (Earlh]

Simple Eccentric Model

Fig.3 shows an eccentric circle whose radius is 1, and a heavenly body P moves along
the circle with a constant speed. Let this model be called “Simple eccentric model”.
In this figure, let

@' Mean anomaly,

v: True anomaly,

0 (equation of centre) = v— ¢

MD = ¢ (eccentric distance).
From Fig.4,

sinB = ¢ sin v= ¢ sin(@+0) = & singcosd + & cospsind
Therefore,

sinB(1- ¢ cose) = & singcosO

gsin @

tanf = = ¢ sin(1+ ¢ cosp)

l-¢gcose
= ¢ sing + 2 singcos@ = ¢ sing + %e? sin 2¢
Now, let ¢ = 2e. As 0 is small, tan® = 0 approximately. Therefore, we get the
following expression as the equation of center according to the “Simple eccentric model”.
0 =~ 2e sing + 2625in2¢@ — D
Here, e corresponds to the eccentricity in modern sense.
In the true Kepler motion (according to modern astronomy), the equation of centre is

expressed as:

0 nwmmE%an.mN sin2¢p — 2
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Therefore, if ¢ = 2¢, the first terms of the equations (1) and (2) are the same, and their
second terms differs slightly. It means that these equations give the same result at the
apogee, perigee, and the points which are at the distance of 90° from them, but give

slightly different results at other points.

Appendix 2, The composition of the equation of centre and the evection of the moon
In this section, I shall show the composition of the equation of centre and the evection
of the moon. It will be shown that Ptolemy’s theory and Mafijula’s theory are justified
as far as lunar longitude is concerned. [1 have consulted Araki (1956) PP.259-260 and Araki (1980) pp.259-260.]
Let:
JI: lunar mean longitude
3#: solar mean longitude
A’ mean longitude of lunar apogee (which revolves once in about 9 years to the
direct direction)
And also:
®=JI-A (lunar mean anomaly)
§=JI-1f (mean angular distance between the moon and the sun)
If we neglect higher term than €2 (eis eccentricity), the modern equation of center and
evection can be expressed as follows:
Equation of centre = 2e sing —_—)
Evection = £ me sin(2§—g) —(2)
Here, m=n’n
(n’is the sun’s mean angular velocity, » is the moon’s mean angular velocity, and e and
m are small values at the order of 10-2 or so.)

Let us express the composition of the equation of centre and evection as follows:

Equation of centre + evection =~ 2 £ sin(p+6) —_ (3
We can define £ and § as follows:

Esind = £ mesin 2§ —_—(4)

Ecosd = e~ 2 me cos 2§ ()]

The reason why we can define like this is that we can obtain the following equation
from the equation (3):
Equation of centre + evection = 2 (sinpcos + cos@sin)
If we substitute the equations (4) and (5) here, the result is the same as the sum of the
equations (1) and (2).

The sum of the squares of the equations (4) and (5) is:
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B2 = (e~ mecos 292 + (¥ mesin 28?2
=&~ L melcos 2f + L m2e
Neglecting higher terms of m and e, and using Taylor series (1+x)12=1+%x, we get:
E=e— £ mecos 28 - :),
Dividing the equation (4) by the equation (5), we get :
2 mesin2&

tand = = =~ L msin 2§
e~ mecos2é

As § is small, using tand = &, we get :

&= %Emgww e ()
From the equations (3), (6) and (7), we get :
Equation of centre + evection = 2. £ sin(q+5) —_— (8

Here, E'= e—% me cos 2§, 6= 2 msin 2§

From the equation (8), we know that : #'is smallest at the time of new moon and full
moon, and is largest at the time of half moon ; § is positive in the 1st and 3rd quadrants,
and the perigee looks as if going back, and is negative in the 2nd and 4th quadrants, and
the perigee looks as if moving ahead. These results agree with Ptolemy’s theory as

well as Maiijula’s theory as far as lunar longitude is concerned.
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