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Chapter 7

Mathematical structure of the
eccentric and epicyclic models in
ancient Greece and India

Yukio Ohashi

Abstract

The secentric and epicyelic models were created in Anclent Greece, and
further developed in India, Islamic World and BEurope. The accuracy of
their mathematical stroctures iz examined in this paper. And alzo, special
features of Indian models are discussed.

Keywords: Doventric madel, Epicvelic model, Greek astrovomy, Indian astronomy
Cleocentrie syalen.

7.1 Introduction

The eceentric model {in the geocentric theory} s that the conter of the orhit of
8 hvenly hody is differen '}

froen the earth.

epdevelic mwadel 9 thar s plaoe

tevedves alons o smadl epieyele amd that the cenger of the sgiovele revoives along a

- luege deferent, {This deforent can e an evsentie cleele.

The eccentric aml eplovelic modeds were crested in Anclest Greece sometime around
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CHAI
the 3¢ century BC, and were introduced into India sometime around the 4th centyyy
AD or so. Indian models were not simple imitation of Greek models, but have speci;;
features. I would like to discuss the mathematical structure of some of these mOdelsf
7.2 Planetary models in Ancient Greece, Islamj
World, and Europe
7.2.1 Apollonius
Epicyelic model Eccentric model (Heliocentric model) }Ii‘(((:
Fig.2
equil
. . solst:
Figure 1: Geocentric Models and Heliocentric Model R
f P
We do not know who invented the eccentric and epicyclic models, but the first as S'er(:r
tronomer who mathematically treated these models seems to be Apollonius (ca. end 1}, D
of the 3 century BC). Ptolemy wrote in his Almagest (XII.1) that Apollonius ex eccer
plained the retrograde motion of planets by the epicyclic model as well as the eccentric
model which is mathematically equivalent to the epicyclic model. (See Fig.1.) Accc
certe
met]
7.2.2 Hipparchus
The equation of center of the sun and moon was explained by Hipparchus (274 century 79

BC) using the eccentric model as well as the epicyclic model which is mathematically
equivalent to the eccentric model. Ptolemy explained the method of Hipparchus in
his Almagest (III~IV). The model of Hipparchus is that the sun (or moon) revolves Ptol
along an eccentric circle with a constant speed. Let this model be called “Simple for t
eccentric model”. luna
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Addwenal b ol L T Vernal
i e%‘m"f‘%" . &%uinax
Figure 2: Simple Eccentric Model of the Solar Orbit
According to the Almagest (II1.4), the solar theory of Hipparchus is as follows. (See
Fig.2.) Hipparchus based on the observational data that the period from the vernal
equinox to the summer solstice is 941/ days, and that the period from the summer
solstice to the autumnal equinox is 921/ days, and determined the eccentric distance
¢ and the longitude of the apogee II of the eccentric circle (radius = 1). If the length
of a year is assumed to be 3651/; days, the period from the autumnal equinox to the
> first 85 | yerpal equinox becomes 1781/4 days. From these data, £ and II can be determined
‘ (c.a. end by plane geometry. In this model, the eccentric distance € is double the modern
ONIUS €% | eccentricity. (See Appendix 1.)
“eccentric ] )
1) According to the Almagest (IV), Hipparchus determined the orbit of the moon (with
certain error) from the observational data of three lunar eclipses. Hipparchus’s
method must have been similar to the method of Ptolemy as shown in Figure 3.
d century l
matically 7.2.3 Ptolemy
yarchus in
) revolves Ptolemy (27¢ century AD), in his Almagest, also used the “Simple eccentric model”
1 “Simple | ~for the solar motion, but newly introduced the second inequality “evection” for the
lunar motion, and also introduced the “Equant model” for the planetary motion.
85

Y



Yukio Ohashi

7.2.4 Ptolemy’s lunar theory (1) (equation of center)

According to the Almagest (IV.1), observational data of the lunar eclipses should ,
used to determine the equation of the center of the moon, because the moon is at Tlﬁ
opposite direction to the sun, and its position can be determined without parally,
from the (already known) solar position. The Almagest (IV.6) explains the metly
to determine the equation of center using the epicyclic model. For this purpose, tj
observational data of the lunar longitude at the time of maximum obscuration
three lunar eclipses as well as the (already known) length of the anomalistic mon}
and that of the tropical month are used. From these data, the mean movement ¢
the lunar apogee and that of the lunar longitude can be obtained.

three
?ggsc/ycie,; “Taﬂe’fker

Figure 3: Determination of the Lunar Equation of Centre

The three points A, B, G in the left side of Figure 3 are the positions of the moo
at the time of maximum obscuration of lunar eclipses. From the period between two
eclipses and the length of the tropical month, the mean change of lunar longitude
during this period is calculated. From this value and the actually observed change of
lunar longitude during this period, the following values are estimated.

Yi=0—-6,, Yo=03—0,

From the mean movement of the lunar apogee during this period, which can be
calculated from the length of the anomalistic month and that of the tropical month,
the following values are estimated.
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CHAPTER 7: MATHEMATICAL STRUCTURE OF THE ECCENTRIC AND EPICYCLIC MODELS

Br=a—a, Br=oa3—

Putting these three epicycles together like the right side of Figure 3, we can determine
the position of the earth D from the above four values using plane geometry. By this
method, the radius of the epicycle (with reference to the radius of the deferent) and
the longitude of the lunar apogee at a certain point of time are obtained. Actually,
the equation of center determined by this method is slightly smaller than the modern
equation of center, due to the effect of evection at the time of lunar eclipse (i.e. full
moon).

7.2.5 Ptolemy’s lunar theory (2) (evection)

As the model as above does not coincide with the actual observations except for the
new moon and full moon, Ptolemy introduced “evection” for the first time in his
Almagest (V).

© (Mean sun)

Cevilire of the
M e,ccgwl"gric,
eircie
s S - "I«
"~ Fiest
lpaiﬂ“(;* &

fAries

Figure 4: Ptolemy’s Lunar Model with “Evection”

In Figure 4, the center M of the eccentric circle revolves along a small circle (M B).
In the figure, £ is the angular distance between the mean moon and the mean sun.
By this method, the epicycle comes near to the earth at the time of half moon, and
the eccentricity looks increased.

There is another effect also. Let B be the opposite point of M, and A' be a cross point
of the epicycle and the straight line BC. The moon revolves once in an anomalistic
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month from A® (not from A). In the figure, a is the mean anomaly. Due to the effeer
of § (=£AC A'), the longitude of the apogee looks changed except for the time of
new moon, full moon, and half moon. (See Appendix 3.)

7.2.6 Ptolemy’s planetary theory

For planets, Ptolemy used the epicyclic model, where an epicycle is revolving along
deferent. The deferent is an eccentric circle. He determined the distance of the def.
erent of Venus (from the earth) by the observation of the greatest elongation whig,
indicates the apparent radius of the epicycle. From this distance, eccentricity is est;.
mated. Then, from the difference between the actual observation and the predictig,
according to the “Simple eccentric model” of the deferent when Venus is at the righ.
angled point from the apogee, he introduced a point which was later called “equant”
He also used the “Equant model” for other planets. (See Appendix 2.)

Ptolemy used a very complicated model for Mercury, which I shall not discuss here,

7.2.7 Islamic World

In the Islamic world, some geometrical models which give similar results to the
“BEquant model” were devised. One of them was the “Double epicycle model” o
ash-Shatir (14" century AD). (See Appendix 4.)

7.2.8 Europe

Copernicus (1473 — 1543) also used a model which is equivalent to the “Doubl
epicycle model” for planets. It is not known whether he was directly influenced by the
model of ash-Shatir or not. Copernicus, however, still used a model which is basically
similar to the “Simple eccentric model” for the earth. He mentioned something like
double epicycle (or its variation) for the earth in his De Revolutionibus (III), but i
was for the secular variation of the eccentricity and the longitude of perihelion, and
was not for the effect due to the “Equant model”. In the Copernican model, the earth
was still different from other planets.

Tycho Brahe (1546 — 1601) also used a model which is equivalent to the “Double
epicycle model” for planets, but used the “Simple eccentric model” for the sun.

Kepler (1571 — 1630) used elliptic orbit for all planets including the earth, and the
earth became an ordinary planet truly.
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CHAPTER7: MATHEMATICAL STRUCTURE OF THE ECCENTRIC AND EPICYCLIC MODELS

heefiy | 7.3 Planetary models in traditional India
 time of

; 7.3.1 The manda-correction and the éfghra—correction
[n the Hindu Classi_cal Astronomy, geocentric epicyclic and eccentric systems are used.
The Mahabhaskariya of Bhaskara I (7™ century) treats the epicyclic and eccentric
systems as mathematically equivalent models for both of the manda-correction and

,g t?ll:r:ji fa the §ighra-correction.
on whig Firstly, mean (madhya) planet, which is supposed to rotate constantly around the
visesti | earth, is calculated, and then, corrections are applied to the mean planet in order
rediction |  to obtain the true (sphuta) planet. One correction is the mgnda—correction, which
he right. ~ corresponds to our equation of center. The other is the dighra-correction, which
‘equant’. | corresponds to the annual parallax in the case of outer planets, and the planet’s own
revolution in the case of inner planets. Firstly, the manda-correction is applied to the
mean planet, which corresponds to the planet’s own mean revolution in the case of
155 here, outer planets, and the sun’s mean revolution in the case of inner planets. The result
is called “manda-sphuta planet”, which is the mean planet corrected by the equation
of center only. Then, the sighra-correction is applied to the “manda-sphuta planet”,
and the true planet is obtained. In the actual calculation, some special methods are
s to the used in the classical texts.
nodel” of
7.3.2 The size of the epicycles in the Aryabhatiya
One interesting feature of the Aryabhatiya (AD499) of Aryabhata is that the size of
the epicycles of the planets changes in different anomalistic quadrants. This is quite
B different from the simple geometrical model. The modern Surya-siddhanta (ca. 10 ~
“Double 11" century AD) etc. also use a similar method.
ed by the

 basically | According to the Aryabhatiya, the manda-epicycles of Mars, Jupiter and Saturn are
thing like | small in the 1* and 3" quadrants, and are large in the 2" and 4" quadrants. The
[1), but it | manda-epicycles of the Mercury and Venus, and the sighra-epicycles of the five planets
olion, and ! are large in the 1% and 3" quadrants, and are small in the 2" and 4" quadrants.

the earth According to the interpretation of Bhaskara I, their size given in the Aryabhatiya is

the value at the beginning of each quadrant, and the size changes linearly. However,
y» “Double | there are other Hindu astronomers who interpret that the size is the value at the end
sun. of each quadrant.

1, and the In the case of the manda-epicycles of the Mars, Jupiter and Saturn, if the interpre-
| tation of Bhaskara I is correct, it can be said that the change of the distance of

89
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the planets becomes somewhat similar to that of the “equant” model. However, t}
change of the Sighra-epicycles is not understandable. Further researches are necessary

7.3.3 Indian method of the manda-correction

The manda-correction is not based on a simple geometrical model, but a speciy
modification is applied. Its result is that the equation of center in this metho
becomes a simple sine function of anomaly. Its accuracy is slightly less than the simple
eccentric model, but their errors (in the opposite direction) are not so different.

S ?mpie
eccenfric
meodel

Figure 5: Equation of Centre in the Hindu Classical Astronomy

In Figure 5, the point S corresponds to the heavenly body in the simple eccentric
model (In the figure, SK||AP, where AS corresponds to the apogee, and P come
sponds to the perigee.). In the Figure 5, S* corresponds to the heavenly body it
the Hindu model. Here, KS = DL = ¢ = 2e (e is eccentricity in modern sense),
SL||KD, and the point Sl s at the cross point of the straight lines XS and DR
Now, RT = SQ = ¢~ sin ¢. Therefore, § ~ sind = RT = € -sin¢. So, we can saf
that the Hindu equation of center is a simple sine function of anomaly. This Hindu
method is well explained in the Mahabhaskariya (IV) of Bhaskara I (7" century).

As T have shown in Appendix 1, the equation of center of the simple eccentric model
and that of the true Kepler motion are:
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CHAPTER 7: MATHEMATICAL STRUCTURE OF THE ECCENTRIC AND EPICYCLIC MODELS

ever, thy | ¢ ~ 2€ SING + 2e%sin2¢ (simple eccentric model)
ecessary, | g 2esing + 2¢?sin 2¢ (true Kepler motion)

It is clear from the above equations that the second term of the simple eccentric
model is too large. The Indian method can be expressed as = 2e sing, and its
inaccuracy is not so different from that of the simple eccentric model (in the opposite

a speciy) direction)

5 methog This Indian method is quite different from the Greek method.
he simple }

rent. !

7.3.4 The method in the Brahma-sphuta-siddhanta

e

The method in the Brahma-sphuta-siddhanta (AD 628) of Brahmagupta is very in-
teresting. Its process, except for Mars, is as follows. Firstly, the amount of the
manda-correction is calculated from the mean planet, and is applied to the mean
planet. The result is the manda-sphuta planet. Secondly, the amount of the Sighra-
correction is calculated from the manda-sphuta planet, and is applied to the manda-
sphuta planet. The result is the true planet after the first approximation. From the
result, the amount of the manda-correction is calculated, and applied to the original
mean planet. From this result, the amount of the ighra-correction is calculated and
applied. The result is the true planet after the second approximation. This process
is repeated until a constant value is obtained.

In the case of Mars, the above mentioned process is not used. The method for Mars
is as follows. Firstly, a half of the amount of the manda-correction and a half of
the sighra-correction are applied, and the once corrected Mars is obtained. From
the result, the amount of the manda-correction is calculated, and its whole amount
is applied to the original mean Mars. From this result, the amount of the Sighra-
correction is calculated, and its whole amount is applied. The result is the true Mars.
This method is the ordinary method used by other Indian astronomers in those days
eccentric | for five planets.

L P COI® } The above mentioned process of the Brahma-sphuta-siddhanta, except for the case
y body 1\n of Mars, means that the amount of the equation of center is a function of the true
1L SeNSe) | anomaly of the planet, and not of the mean anomaly. This fact shows that the

and DR Indian model of planetary motion is not a simple imitation of the Greek geometrical
e can $ay - model, and further investigation of the Indian model is needed. At present, I suspect
‘hzs Hl)nd“ that Indian astronomers in those days considered that the inequality of the manda-
ntury).

correction is produced by a kind of physical force originated to the apogee, and this
tric model |  force is equilibrated with the displacement of planetary position due to the inequality.
If 0, the amount of the inequality should be a function of the actual position of the

91
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true planet (instead of the mean position like the Greek model).

It may be mentioned here that Brahmagupta did not use the above mentioned gy,
cessive approximation for the calculation of true planets in his Khanda-khadyaka (Ap)
665), but used the ordinary method, like the case of Mars in his earlier work, for fiy,
planets.

7.3.5 The lunar theory in the Laghu-manasa

Maiijula was an astronomer of the 10%" century AD. His name is sometimes spelle
Muiijala, but Kripa Shankar Shukla pointed out that Maiijula is his real name.

Maiijula composed the Laghu-manasa (932 AD). This is a karana work (handy prac.
tical work of astronomy) of mathematical astronomy. It is a small but very importans
work. It contains the second correction for the moon. According to Yallaya’s com.
mentary (1482 AD) on the Laghu-manasa, this correction originated from Vatesvara’s
work (early 10" century). The statement of Yallaya has not been confirmed by
Vateévara’s extant works.

According to K. S. Shukla’s commentary in his edition of the Laghu-manasa, Manjulas
second correction for the moon can be expressed as follows:

144'26" cos(S — U) sin(M — S) (A)

where S, M, and U are the true longitudes of the sun, moon, and the moon’s apogee
(mandocca) respectively. Shukla pointed out that this is a combination of the “deficit
of the equation of center” and the “evection”.

We can understand this expression as follows. From the equation (8) in my Appendix
3, the eccentricity looks & = e ~% me. cos 2, and if it is obtained from the observation
of lunar eclipses (like Hipparchus etc.), when & is 180; the eccentricity appears &
E ~ e - $me, and the equation of center appear as 2(e - %me)sindm Here, 2><1785me.

8
sing corresponds to the “deficit of the equation of center”. Then:

“deficit of the equation of center” = 12 me sin ¢ (B)

“evection” = % me sin(2€ — ¢) (©
Mafijula’s second correction corresponds to the sum of (B) and (C).
(B)+(C) = Lme{sing +sin(26 - ¢)}
= %?me x 2{sin§. cos(¢ — &)}
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CHAPTER 7: MATHEMATICAL STRUCTURE OF THE ECCENTRIC AND EPICYCLIC MODELS

r
! ’ (B)+(C) = 1jlme{sin(/\~E).COS(E—A)}. (D)
ned Suc- 2
aka (AD f we use the notation of the expression (A), the expression (D) can be expressed as:
, for fiye
' 15 .
(B)+(C) = Tm,e{sm(.?\[ —S).cos(S—U)}
This expression corresponds to the expression (A). From this fact, we know that
Maiijula’s second correction is justified. Mafjula’s way of thinking might have been
5 spelled different from Ptolemy, and we should investigate his method further.
me.
1dy prac- e
nportant 7.3.6 The Bija-upanaya controversy
a’s com- . - - . .
tesvara’s There is a small WO/I'k Bzyq-ueaﬁaya (:A Bijopanaya), Where the lun;cu inequality C(?r—
rmed by responding to the “variation” is mentmngd and attributed to Bhaskara II, but its
authorship is controversial. Ghosh maintained that it is Bhaskara II's own work, and
published the following edition:
N1 3,
fanjula’ Ghosh, Ekendranath (ed.): Bhaskariya-Bijopanaya, Motilal Banarsidass, Lahore,
1926.
(4) This work mentions two corrections, an improvement of the equation of center in
, Hindu Classical Astronomy, and an inequality corresponding to the variation. Al-
es fé)e%g;: though the text itself mentions Bhaskara as its author, Kuppanna Sastry, criticizing

Ghosh, pointed out several reasons that it cannot be the work of Bhaskara II, some
of which are as follows. The first correction produces an error which is unusual for
A ppendix the otherwise accurate system of Bhaskara II. The Bija-upanaya was not known to
servation astronomers who followed Bhaskara II. In this work, the corrections are given in the
bpears as form of tabular values, although this kind of calculation is usually given in the form
2><1§5m6. of equations. And also, the style of this work is not Bhaskara II’s.

These arguments of Kuppanna Sastry are understandable, ar}d the Bija-upanaya will
(B) | not be a work of Bhaskara II, but the real author of this Bija-upanaya is still to be
investigated.

©

7.4 Conclusion

- We have seen that eccentric and epicyclic models in Indian Classical Astronomy have
several origins. Greek models are evidently geometrical, but Indian models may not
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be purely geometrical. More research on the Indian models is needed.

Appendix

Appendix 1: The accuracy of the simple eccentric model

(Heavenly
body)

MED %
(Certre) (Earth) / =

(aagaév>

Figure 6: Simple Eccentric Model

Figure 6 shows an eccentric circle whose radius is 1, and a heavenly body P move

along the circle with a constant speed. Let this model be called “Simple eccentri
model”. In this figure, let

¢ : Mean anomaly,

v : True anomaly,

6 (equation of center) = v — ¢

MD = ¢ (eccentric distance).

From Figure 7,

€inf = esinv = esin(¢ + 0) = esing cosf + € cos ¢psinf
Therefore,

sin (1 — e cos ¢) = esingcos b

tanf = 1—% ~ esing(l +ecos o)

— esing + e2singcosp =esing + 1e2sin2¢
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CHAPTER 7: MATHEMATICAL STRUCTURE OF THE ECCENTRIC AND EPICYCLIC MODELS

'P

r\'\f
M

¢siny
= siY\Q

Figure 7: A part of the Figure 6

Now, let & = 2e. As 6 is small, tan § ~ 6 approximately. Therefore, we get the follow-
ing expression as the equation of center according to the “Simple eccentric
model”.

6 ~ 2esin pe? sin 2¢ (1)

Here, e corresponds to the eccentricity in the modern sense.

In the true Kepler motion (according to modern astronomy), the equation of center
is expressed as:

5
0 ~ 2esinp + Zez sin 2¢p (2)

Therefore, if ¢ = 2e, the first terms of the equations (1) and (2) are the same, and
their second terms differs slightly. It means that these equations give the same result
at the apogee, perigee, and the points which are at the distance of 90 ° from them,
but give slightly different results at other points.

Appendix 2: The accuracy of the “Equant” model

Figure 8 shows an eccentric circle whose radius is 1, and a heavenly body P revolves

“around a point F (“equant”) with a constant angular velocity. Let this model be

called “Equant model”.
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Let MD = ME = e. Then, as QM = esing, and PM =1, we get mode
p.259

PQ =/1—esinp.
Q ersmy . Let;

A

Figure 8: Equant Model

And also, from this equation and RQ = QF = ecos ¢,

=

PR:PQ—RQ:\/1—ezsin290—ecos<p. A m

direc
And also, as RD = 2esin ¢, we have

And

RD i o=

tanf = 2 — 2esin @ .

PR 1 —e2sin® ¢ —ecos L=

3 B

Multiply its denominator and numerator by \/1 — e2sin® p + ecos g, and also, use ! (mea
Taylor series (1+x)"/? ~1+1/2z, where z is small. Then, we get: o Ifwe
and ¢

2esinp(1 — e?sin® o + ecos p)
1—e?

tanf =~
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Here, if terms higher than e* is ignored, we get:

tanf ~ 2esin ¢ + 2e sin ¢ cos ¢

Then, as ¢ is small, using tan 6 ~ 6, we get the following expression as the equation
of center according to the “Equant model”.

=~ 2esin ¢ + €*sin 2¢ (3)

From this equation, we know that the second term of the “Equant model” is closer
to that of the true Kepler motion (equation (2)) than that of the “Simple eccentric
model” (equation (1)). And also, it is evident that the distance to the heavenly
body in the “Equant model” is close to the actual distance, but that of the “Simple
eccentric model” is not so.

Appendix 3: The composition of the equation of center and the evection
of the moon

In this section, I shall show that Ptolemy’s model (regarding the longitude of the
moon) is justified with respect to the composition of the modern equation of center
and the evection of the moon. (Of course, the distance of the moon in Ptolemy’s
model is not justified.) (I have consulted Araki (1956) p.259-260 and Araki (1980)
p.259-260.)

Let:
A : lunar mean longitude
Z : solar mean longitude

A: mean longitude of lunar apogee (which revolves once in about 9 years to the direct
direction).

And also:
®=A— A (lunar mean anomaly)
(=A-Z=

) (mean angular distance between the moon and the sun).
also, use i
If we neglect higher term than e® (e is eccentricity), the modern equation of center

and evection can be expressed as follows:

Equation of center = 2esin ¢ (1)
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15
Evection = - me sin(2€ — ¢) 0

Here, m = n/n;

(n’ is the sun’s mean angular velocity, n is the moon’s mean angular velocity, an(,
and m are small values at the order of 1072 or so.)

Let us express the composition of the equation of center and evection as follows:

Equation of center + evection ~ 2E sin(¢ + 9). 3

We can define E and ¢ as follows:

Esind = £ me sin2¢. (4)

15
Ecoséze—gme cos 2¢€. (5)

The reason why we can define like this is that we can obtain the following equatio
from the equation (3):

Equation of center + evection ~ 2E(sin ¢ cosd + cos ¢ sind).

If we substitute the equations (4) and (5) here, the result is the same as the sum of
the equations (1) and (2).

The sum of the squares of the equations (4) and (5) is:

15
E? = (e—gmecos%)z—!—(%mesin2§)2

15 15
2 2 2.2
= - 2 e .
e 1 me~ cos 26 + 3 m-e
Neglecting higher terms of m and e, and using Taylor series (1+x)1/ 2 141, we

get:

E~e— 18—5me cos 2¢. (6)

Dividing the equation (4) by the equation (5), we get :

15 ;
2mesin 26 15
tand = —8—— >~ “msin2€.
e—lggmecos% g ¢
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As § is small, using tand ~ o, we get:

=

.15 .
~ gm sin 2€. (7)

From the equations (3), (6) and (7), we get:

Equation of center + evection ~ 2Esin(¢ + §); (8)

15 -
here, £ ~ e — < e cos2¢, 6 ~ Lmsin2€.

From the equation (8), we know that: E is smallest at the time of new moon and
full moon, and is largest at the time of half moon; ¢ is positive in the 1st and 3rd
quadrants, and the perigee looks as if going back, and is negative in the 2" and
4th quadrants, and the perigee looks as if moving ahead. These results agree with
Ptolemy’s model.

We should note that Ptolemy’s model is only good for the lunar longitude. As re-
gards the distance of the moon from the earth (or apparent diameter of the moon),
Ptolemy’s model is far from the truth.

Appendix 4: Double epicycle model

The “Double epicycle model” is a device to give an almost similar result to the
“Equant model” by a combination of uniform circular motion only. It will be clear
from Fig. 9.

In the “Double epicycle model”, the first (larger) epicycle is on the deferent, and is
revolving eastwards. There is a second (smaller) epicycle on the first epicycle, and the
second epicycle is revolving westwards with respect to the line between the center of
the deferent and the center of the first epicycle, and so the second epicycle is always at
the direction of the apogee on the first epicycle. The heavenly body is on the second
epicycle, and revolves eastwards. The heavenly body’s speed is double the speed of
the center of the epicycles, and is in the direction of the perigee at the apogee and
perigee.
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Figure 9: Equant Model and Double Epicycle Model
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