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The Greek world in the fifth and fourth centuries B.C.

(From Lloyd: Early Greek Science: Thales to Aristotle, London, 1970.)



mailto:yukio-ohashi@chorus.ocn.ne.jp

Chronological Summary

Mathematics and astronomy in ancient Greece

General History

Philosophers and

Mathematicians and

Historians Astronomers
610 B.C. The beginning of | Milesian school: 585 B.C. Thales
the New Babylo- Thales 550 B.C. Pythagoras
nian empire Anaximander Anaximander
540 B.C. The beginning of Anaximenes
the Persian empire
500 B.C. Ionian revolt Heraclitus 500 B.C. Hippasus
480 B.C. Persian wars The Eleatics 500 B.C.—350 B.C.
450 B.C. Pericles 450 B.C. Anaxagoras Pythagoreans
420 B.C. Peloponnesian war Herodotus Anaxagoras
Oenopides
430 B.C. Atomists 430 B.C. Hippocrates
Democritus
410 B.C. Thucydides Theodorus
370 B.C. Epaminondas Socrates 1399 390 B.C. Archytas
Plato Theaetetus
370 B.C. Eudoxus
Callippus
Heraclides of Pontus Hicetas
350 B.C. Menaechmus
Aristotle Dinostratus
Eudemus Autolycus
333 B.C. Alexander the 300 B.C. Euclid
Great 280 B.C. Aristarchus
Hellenism Stoics 250 B.C. Archimedes
240 B.C. Eratosthenes
Nicomedes
210 B.C. Apollonius
150 B.C. Hipparchus
60 B.C. Julius Caesar 60 A.D. Heron
1 A.D. Augustus Neo-Pythagoreans 100 A.D. Menelaus

400 A.D. Migration

Neo-Platonists:

Proclus

150 A.D. Ptolemy
250 A.D. Diophantus
320 A.D. Pappus

(From van der Waerden: Science Awakening I, Groningen, 1961, p.82.)




I. Greek Calendars: Luni-solar calendars.

(A) Around the second half of the 6" century BCE or so,
“Eight-year cycle”: There are 3 intercalary months in 8
years. (8 years = 2922 days, 1 year = 365.25 days, but
1 synodic month = 29.51515 days (inaccurate))

(B) 432 BCE, Metonic cycle: There are 7
intercalary months in 19 years. (19 years = 6940 days,
1 year = 365.2632 days, 1 synodic month =29.53191 days)

(C) 330 BCE, Callippic cycle:  There are 28
intercalary months in 76 years. (76 years = 27759 days,

1 year = 365.25 days, 1 synodic month =29.53085 days)

(D) The 2™ century BCE, Hipparchic cycle: There are 112
intercalary months in 304 years. (Here, 304 years = 111035 days,
1 year = 365.2467 days, 1 synodic month =29.53059 days)

(See Heath: Greek Astronomy, 1932, pp.xvi-xvii and 136-142.)

The Metonic, Callippic, and Hipparchic cycles are multiples of
Metonic cycle. As the number of days in a cycle was considered to be
integer, long period was necessary in order to make it accurate.



[I. Early natural philosophers (before Socrates)
Milesian school:
Thales, ----- (Material cause of things --- “water”.)
Anaximander, ----- (Material cause of things --- “boundless”.)
Anaximenes. ----- (Material cause of things --- “air”.)

Pythagoras, (and Pythagoreans).

----- (Principle of all things --- “numbers”.)

Heraclitus. ----- (Everything is subject to change.)

(All things are an equal exchange for “fire”.)

The Eleatics:
Parmenides, ----- (Denied that change can occur at all.)
Zeno. ----- (“Zeno’s paradoxes”)

Anaxagoras. ---- (In everything there is a portion of everything.)

Empedocles. ----- (Four elements: earth, water, air and fire.)
Atomists: Leucippus,
Democritus.

----- (The atoms and the void alone are real.).

(For more detail, see Lloyd: Early Greek Science: Thales to Aristotle, London, 1970, and
references listed in this book. The most authentic collection of their fragments was made by Diels
and Kranz, but a convenient concise reference book is Mansfield and Primavesi (2012) in Greek and
German. There are some Japanese translations of their fragments: Yamamoto (1958), Uchiyama
(1996-1998), Kusakabe (2000-2001).)



I11. The Age of Socrates, Plato, Aristotle
Plato (427 — 347 BCE) mentioned his cosmology in his

Timaeus etc.

Eudoxus of Cnidus (4™ century BCE) Q

Eudoxus was a student and colleague of Plato.

Eudoxus’s theory of concentric spheres:

Diagram 6 Eudoxus’ theory of concentric spheres. Th
planet (P) is on the equator of sphere (4), out of the plane
the rest of the diagram.

Diagram 7 To illustrate the ‘hippopede’ of Eudoxus
From Neugebauer, Scripta Mathematica, no. 19 (1953

. 220.
88 P- 229

(From Lloyd: Early Greek Science: Thales to Aristotle, London, 1970, p.88.)



Aristotle (384 — 322 BCE):

Aristotle was a student of Plato. He left several works on formal
logic, metaphysics, natural philosophy (including cosmology etc.),
zoology, and several branches of humanities and social sciences.

Formal logic:

LOEB CLASSICAL LIBRARY
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(Aristotle (in 23 volumes) I, (Loeb Classical Library), (Greek text and English translation),
Cambridge, Mass., Harvard University Press, and London, William Heineman Ltd, 1938.)
If you want to read Greek or Latin texts with English translation, the “Loeb Classical

Library” is a convenient series.
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PRIOR ANALYTICS, I. mi-1v

convert, whereas the particular negative does. This
will become clear when we discuss the possible.?

Tor the present we may regard this much as clear,
in addition to what we have already said : that the
statement ‘ it is possible for A to apply to no B’ or
‘ not to apply to some B’ is affirmative in form ; for
the expression ‘is possible * corresponds to *is,” and
the word ‘is,” to whatever terms it is attached in
predication, has always and without exception the
effect of affirmation : e.g., ‘is not good’ or ‘is not
white ’ or in general ‘is not X.” This also will be
proved later.’ In respect of conversion these pre-
misses will be governed by the same conditions as
other affirmatives.

IV. Having drawn these distinctions we can now Figures and
state by what means, and when, and how every ',’;.?fdo;i;,r.
syllogism is effected. Afterwards we must deal with
demonstration.® The reason why we must deal with
the syllogism before we deal with demonstration is
that the syllogism is more universal ; for demonstra-
tion is a kind of syllogism, but not every syllogism
is a demonstration.

When three terms are so related to one another The First
that the last is wholly contained in the middle and 8"
the middle is wholly contained in or excluded from the
first, the extremes must admit of perfect syllogism.

By ‘ middle term ’ I mean that which both is con- Middle
tained in another and contains another in itself, and *™
which is the middle by its position also; and by

‘ extremes ’ (@) that which 1s contained in another, Extreme
and (b) that in which another is contained. For if A #75%,
is predicated of all B, and B of all C, A must neces- premisses
sarily be predicated of all C. We have already Barbara. "
explained ¢ what we mean by saying that one term
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is predicated of all of another. Similarly too if A Celarent.
is predicated of none of B, and B of all of C, it follows
that A will apply to no C.

If, however, the first term applies to all the middle,
and the middle to none of the last, the extremes
cannot admit of syllogism ; for no conclusion follows
necessarily from the fact that they are such, since it
is possible for the first term to apply either to all or
to none of the last, and so neither a particular nor a
universal conclusion necessarily follows ; and if no
necessary conclusion follows from the premisses there
can be no syllogism. The positive relation of the
extremes may be illustrated by the terms animal—
man—horse ; the negative relation by animal—man
—stone.

Again, when the first applies to none of the middle, sx-
and the middle to none of the last, here too there can
be no syllogism. The positive relation of the extremes
may be illustrated by the terms science—line—medi-
cine ; the negative relation by science—line—unit.

Thus if the terms are in a universal relation it is
clear, so far as this figure is concerned, when there
will be a syllogism and when there will not. It is
clear also that if there is a syllogism the terms must
be related as we have said ; and that if they are so
related, there will be a syllogism.

If, however, one of the (extreme) terms is in a (2)one
universal and the other in a particular relation to !Niversal
the remaining term, when the universal statement, particular
whether affirmative or negative, refers to the major P**™
term, and the particular statement is affirmative and
refers to the minor term, there must be a perfect
syllogism ; but when the universal statement refers
to the minor term, or the terms are related in any

211

-
i

(From Aristotle I, (Loeb Classical Library), 1938, pp. 208-211.)



Syllogism (in the Prior Analytics of Aristotle):
“If A is predicated of all B, and B of all C, A must
necessarily be predicated of all C.”
Example: A: living thing.
B: animal.
C: horse.
“If all animals are living things, and all horses are animals,

all horses must necessarily be living things.

Aristotelian natural philosophy
Geocentric cosmology. Theory of concentric spheres.
(A) Everything on the earth:
Four elements (earth, water, air and fire).
Move upwards and downwards.
(B) Heavenly bodies:
The fifth element “ether” (or “aether”).

Eternal, unvarying circular movements.



Iv. Alexandrian Age
(The Age of Hellenistic Science)

From the death of Alexander the Great (323 BCE) to the

Roman conquest of Ptolemaic Dynasty in Egypt (30 BCE).

Ptolemaic |z
Kingdom

(From Lloyd: Greek Science after Aristotle, London, 1973, with my additions.)

Alexandria in Egypt (Ptolemaic Kingdom) was a centre of
Greek science. The Library and Museum were established

In Alexandria.



Euclid of Alexandria (fl. around 300 BCE)

Euclid wrote some works on mathematics on mathematics

and astronomy including the famous Elements.

Some works of Euclid:

Elements, --- on axiomatic geometry.
----- For its English translation, see Heath: Euclid, the thirteen books of The Elements, 3 vols,

1956. There are Japanese translations of the Elements also. (one translation was published in
1971.).

Data, --- on the given information in geometrical problems.
----- There are some English translations. One translation is included in Simson (1938).

A Japanese translation by Ken Saito is included in [—=©v 7 L 7 A4 ] Vol.4, 2008.

Optics, --- on the geometry of vision.
----- See Burton (1945). A Japanese translation by Ken’ichi Takahashi is included in

f=v 27 v 17 244] Vol.4, 2008.
Catoptrics, --- on the phenomena of reflecting light by mirrors.

————— A Japanese translation by Ken’ichi Takahashi is included in =7 7 LA 5 A 24 ]
\ol.4, 2008.

Phaenomena, --- on spherical astronomy.
----- See Berggren and Thomas (1996).

And some other works.

Now Japanese translation of the complete works of Euclid is being published since 2008.



The Elements ----- Euclidian geometry (Axiomatic system)

BOOK L
DEFINITIONS.

A point is that which has no part.

A line is breadthless length.

The extremities of a line are points.

4. A straight line is a line which lies evenly with the
points on itself.

5. A surface is that which has length and breadth only.

6. The extremities of a surface are lines.

. A plane surface is a surface which lies evenly with
the straight lines on itself.

3. A plane angle is the inclination to one another of
wo lines in a plane which meet one another and do not lie in
a straight line.

And when the lines containing the angle are straight,
the angle is called rectilineal.

1o. When a straight line set up on a straight line makes
the adjacent angles equal to one another, each of the equal
angles is right, and the straight line standing on the other is
called a perpendicular to that on which it stands.

1. An obtuse angle is an angle greater than a right
angle.

12. An acute angle is an angle less than a right angle.

13. A boundary is that which is an extremity of any-
thing.

14. A figure is that which is contained by any boundary
or boundaries.

15. A circle is a plane figure contained by one line such
that all the straight lines falling upon it from one point among
those lying within the figure are equal to one another ;

©

3

16. And the point is called the centre of the circle,

17. A diameter of the circle is any straight line gy,
through the centre and terminated in both directions L a‘;;
circumference of the circle, and such a straight lineytle
bisects the circle. 3o

18. A semicircle is the figure contained by the diameyy,
and the circumference cut off by it. And the centre of thr
semicircle is the same as that of the circle. ¢

19. Rectilineal figures are those which are COntaineq
by straight lines, trilateral figures being those contained }
three, quadrilateral those contained by four, and muy]y
lateral those contained by more than four straight lines .

20.  Of trilateral figures, an equilateral triangle is thy
which has its three sides equal, an isosceles triangle thy
which has two of its sides alone equal, and a scalene
triangle that which has its three sides unequal.

21. Further, of trilateral figures, a right-angled tri.
angle is that which has a right angle, an obtuse-angleq
triangle that which has an obtuse angle, and an acute.
angled triangle that which has its three angles acute.

22.  Of quadrilateral figures, a square is that which s
both equilateral and right-angled ; an oblong that which is
right-angled but not equilateral ; a rhombus that which i
equilateral but not right-angled ; and a rhomboid that which
has its opposite sides and angles equal to one another but is
neither equilateral nor right-angled. And let quadrilaterals
other than these be called trapezia.

23. Parallel straight lines are straight lines which,
being in the same plane and being produced indefinitely in
both directions, do not meet one another in either direction.



POSTULATES.

Let the following be postulated :

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a
straight line.

3. To describe a circle with any centre and distance.

4. That all right angles are equal to one another.

That, if a straight line falling on two straight lines
ké the interior angles on the same side less than two right
ma the two straight lines, if produced indefinitely, meet

2?1551%; side on which are the angles less than the two right

angles.
COMMON NOTIONS.

Things which are equal to the same thing are also
o one another.

If equals be added to equals, the wholes are equal.

If equals be subtracted from equals, the remainders

I.
equal t
2.

3
aré Cqua].
[7] 4 Things which coincide with one another are equal to

one another.
(8] 5- The whole is greater than the part.

(From Heath: Euclid The Elements, 1956, Vol.1. The above quotation is from pp.153-155, and the
following quotation is from pp.241-242.) (There are Japanese translations of the Elements also.

Now Japanese translation of the complete works of Euclid including Elements is being published.)

“Postulates” are now usually called “Axioms”.
The axiomatic system is now a standard system of

the basic theories of mathematics and physics.



BOOK I. PROPOSITIONS.

ProrosiTiON 1.

On a given finite straight line to construct an equilateral

(riangle.
Let A5 be the given finite straight line.
Thus it is required to con-

gstruct an equilateral triangle on

c
the straight line A4 B,
With centre A and distance
AB let the circle BCD be p A c

described ; [Post. 3]
pagain, with centre & and dis-
ance BA let the circle ACE
be described ; [Post. 3]

and from the point C, in which the circles cut one another, to
the points A, 7 let the straight lines CA4, CB be joined.
[Post. 1]

5 Now, since the point 4 is the centre of the circle CDB,
AC is equal 1o 45. [Def. 15]
Again, since the point 7 is the centre of the circle CAE,
BC is equal to BA. [Def. 15]
But CA was also proved equal to 45 ;

»therefore each of the straight lines C4, CB is equal to A5.
And things which are equal to the same thing are also
equal to one another ; [C. M. 1]

therefore CA is also equal to CA.

Therefore the three straight lines CA, 4B, BC are
sequal to one another.

Therefore the triangle 4BC is equilateral; and j; y,
been constructed on the given finite straight line 45, -
(Being) what it was required ¢, do

1. On a given finite straight line. The Greek usage differs from ours
definite article is employed in such a phrase as this where we have the indefinite, exl 73
dobeios ebfelas wemepaauévys, “on the given finite straight line,” i.e. the fnite stra ht l."
which we choose to take. Eht line

-3. Let AB be the given finite straight line. To be strictly literal we shoulq ha
translate in the reverse order “‘let the given finite straight line be the (straight line) Av;.f’
but this order is inconvenient in other cases where there is more than one datum, eg. in h;
setting-out of 1. 2, ‘‘let the given point be 4, and the given straight line BC,” the av\:kw e
ness arising from the omission of the verb in the second clause. Hence I have, for clearn“d;
sake, adopted the other order throughout the book. o

8. let the circle BCD be described. Two things are here to be noted, (1)
and practically universal use of the perfect passive imperative in constructions, Yevpdgs,
meaning of course ‘‘let it /ave been described” or *‘suppose it described,” (2) the im a 2
bility of expressing shortly in a translation the force of the words in their original (?rd:l-
KkikNos yeypdgbw 6 BI'A means literally ““let a circle have been described, the (circle namelL
which I denote by) BCD.” Similarly we have lower down *let straight lines, (na;ne]y) my :
(straight lines) C4, CB, be joined,” émefevyfwoav ebbetar al TA, I'B. There seems to b:
no practicable alternative, in English, but to translate as I have done in the text.

13. from the point C.... Euclid is careful to adhere to the phraseology of Postulae I
except that he speaks of *joining” (émeevxfwoar) instead of ** drawing ™ (ypdgew), He
does not allow himself to use the shortened expression *“let the straight line #C be joined
(without mention of the points #, C) until 1. 5.

20. each of the straight lines CA, CB, éxarépa 7Gv TA, T'B and 24. the three
straight lines CA, AB, BC, al 7peis al T'A, AB, BI. I have, here and in al] similar
expressions, inserted the words *‘straight lines ” which are not in the Greek. The possession
of the inflected definite article enables the Greek to omit the words, but this is not possible
in Englis?, and it would scarcely be English to write ‘“each of C4, CB” or *““the three C4
AB, BC. ?

in that the

the elegan



Aristarchus of Samos (ca. 310 — 230 BCE)

Aristarchus’ determination of the sizes and

distances of the Sun and Moon
ARISTARCHUS OF SAMOS c

AristarcHUS, On the Sizes and Distances of the Sun and
Moon.

(Hypotheses.)

1. That the moon receives its light from the sun.

2. That the earth is in the relation of a point and centre
to the sphere in which the moon moves.

3. That, when the moon appears to us halved, the great
circle which divides the dark and the bright portions of the
moon is in the direction of our eye.

4. That, when the moon appears to us halved, its distance
from the sun is then less than a quadrant by one-thirtieth
part of a quadrant.

1ie. 9o°— 3° or 87°. The true value is 89° 50".

s. That the breadth of the earth’s shadow is that of
two moons.

6. That the moon subtends one-fifteenth part of a sign
of the zodiac.

(Given these hypotheses) it is proved that:

1. The distance of the sun from the earth is greater than
eighteen times, but less than twenty times, the distance of
the moon from the earth: this follows from the hypothesis
about the halved moon.

2. The diameter of the sun has the same ratio as aforesaid
to the diameter of the moon.

3. The diameter of the sun has to the diameter of the
earth a ratio greater than that which 19 has to 3, but less
than that which 43 has to 6: this follows from the ratio
thus discovered between the distances, the hypothesis
about the shadow, and the hypothesis that the moon
subtends one-fifteenth part of a sign of the zodiac.



1 According to Archimedes, Aristarchus “discovered that
the sun appeared to be about 1 /720th part of the circle of the
zodiac”: that is, Aristarchus discovered (evidently at a date
later than that of the treatise) the much more correct value
of 3° for the angular diameter of the sun or moon (for he
maintained that both had the same angular diameter).

(From Heath: Greek Astronomy, 1932, pp.100 — 101.)

(Also see Japanese translation of the work of Aristarchus by Kusayama in Tamura (1972).)

Moon
(Half-moon)




Aristarchus’ heliocentric system

The heliocentric system : Copernicus anticipated

ARCHIMEDES, Psammites (Sand-reckoner), c. 1, 1-10.

There are some, King Gelon, who think that the
number of the sand is infinite in multitude; and I mean
by the sand not only that which exists about Syracuse
and the rest of Sicily, but also that which is found in every
region, whether inhabited or uninhabited. ~Again, there
are some who, without regarding it as infinite, yet think
that no number has been named which is great enough to
exceed its multitude. And it is clear that they who hold
this view, if they imagined 2 mass made up of sand as
large in size as the mass of the earth, including in it all
the seas and the hollows of the earth filled up to a height
equal to that of the highest mountain, would be many
times further still from recognizing that any number
could be expressed which exceeded the multitude of the
sand so taken. But I will try to show you, by means of
geometrical proofs, which you will be able to follow,
that, of the numbers named by me and given in the work
which I sent to Zeuxippus, some exceed, not only the
number of the mass of sand equal in size to the earth
filled up in the way described, but also that of a mass
equal in size to the universe. Now you are aware that
“universe” is the name given by most astronomers to the
sphere the centre of which is the centre of the earth,
and the radius of which is equal to the straight line
between the centre of the sun and the centre of the
earth; this you have seen in the treatises written by
astronomers,



But Aristarchus of Samos brought out a book consisting
of certain hypotheses, in which the premisses lead to the
conclusion that the universe is many times greater than
that now so called. His hypotheses are that the fixed
stars and the sun remain motionless, that the earth
revolves about the sun in the circumference of a circle,
the sun lying in the middle of the orbit, and that the
sphere of the fixed stars, situated about the same centre
as the sun, is so great that the circle in which he supposes
the earth to revolve bears such a proportion to the
distance of the fixed stars as the centre of the sphere
bears to its surface.

Now it is easy to see that this is impossible; for, since
the centre of the sphere has no magnitude, we cannot
conceive it to bear any ratio whatever to the surface of
the sphere. We must, however, take Aristarchus to
mean this: since we conceive the earth to be, as it were,
the centre of the universe, the ratio which the earth bears
to what we describe as the “universe’’ is the same as the
ratio which the sphere containing the circle in which he
supposes the earth to revolve bears to the sphere of the
fixed stars. For he adapts the proofs of the phenomena
to a hypothesis of this kind, and in particular he appears
to suppose the size of the sphere in which he represents
the earth as moving to be equal to what we call the
“universe.”

I say then, that, even if a sphere were made up of sand
to a size as great as Aristarchus supposes the sphere of the
fixed stars to be, I shall still be able to prove that, of the
numbers named in the ‘‘Principles,” some exceed in
multitude the number of the sand which is equal in size
to the sphere referred to, provided that the following
assumptions be made:



1. The perimeter of the earth is about 3,000,000
stades and not greater.!

It is true that some have tried, as you are, of course,
aware, to prove that the said perimeter is about 300,000
stades. But I go farther and, putting the size of the
earth at ten times the size that my predecessors thought it,
I suppose its perimeter to be about 3,000,000 stades and
not greater.

2. The diameter of the earth is greater than the
diameter of the moon, and the diameter of the sun is
greater than the diameter of the earth.

In this assumption I follow most of the earlier
astronomers.

3. The diameter of the sun is about 30 times the
diameter of the moon and not greater.

It is true that, of the earlier astronomers, Eudoxus
declared it to be about nine times as great, and Phidias,
my father, twelve times, while Aristarchus tried to prove
that the diameter of the sun is greater than 18 times, but
less than 20 times, the diameter of the moon. But I go
even further than Aristarchus, in order that the truth of
my proposition may be established beyond dispute, and
I suppose the diameter of the sun to be about 30 times
that of the moon and not greater.

4. The diameter of the sun is greater than the side
of the chiliagon (a regular polygon of 1000 sides) inscribed
in the greatest circle in the sphere of the universe.

I make this assumption because Aristarchus discovered
that the sun appeared to be about z15th part of the circle
of the zodiac, and I myself tried, by a method which I

1 Archimedes obviously here takes an extreme figure in
order that he may be on the safe side.

will now describe, to find experimentally (by means of a
mechanical contrivance), the angle subtended by the sun
and having its vertex at the eye.

[In the end Archimedes finds, by sheer calculation,
that the number of grains of sand that would be contained
in a sphere of the size attributed to the universe is less
than the number which we should express as 10%.]

(From Heath: Greek Astronomy, 1932, pp.105 — 108.)

Also see Heath: Aristarchus of Samos, Oxford, The Clarendon Press, 1913, and/or Japanese
translation of the works of Archimedes by Mita in Tamura (1972).



Archimedes of Syracuse (287? — 212 BCE)

An example from Archimedes’ The Method

Heath (History of Greek mathematics II, p. 20) has the following to say about
the general character of the works of Archimedes:

The treatises are, without exception, monuments of mathematical exposition; the gradual
revelation of the plan of attack, the masterly ordering of the propositions, the stern elimin-
ation of everything not immediately relevant to the purpose, the finish of the whole, are so
impressive in their perfection as to create a feeling akin to awe in the mind of the reader. As
Plutarchsaid, *'It is not possible to find in geometry more difficult and troublesome questions
or proofs set out in simpler and clearer propositions’’. There is at the same time a certain
mystery veiling the way in which he arrived at his results. For it is clear that they were not
discovered by the steps which lead up to them in the finished treatises. If the geometrical
treatises stood alone, Archimedes might seem, as Wallis said, “‘as it were of set purpose to
have covered up the traces of his investigation, as if he had grudged posterity the secret
of his method of inquiry, while he wished to extort from them assent to his results’’. And
indeed (again in the words of Wallis) “'not only Archimedes but nearly all the ancients so
hid from posterity their method of Analysis (though it is clear that they had one) that more
modern mathematicians found it easier to invent a new Analysis than to seek out the old".
A partial exception is now furnished by The Method of Archimedes, so happily discovered
by Heiberg. In this book Archimedes tells us how he discovered certain theorems in quadra-
ture and cubature, namely by the use of mechanics, weighing elements of a figure against
elements of another simpler figure the mensuration of which was already known. At the
same time he is careful to insist on the difference between (1) the means which may be suffic-
ient to suggest the truth of theorems, although not furnishing scientific proofs of them,
and (2) the rigorous demonstrations of them by orthodox geometrical methods which must
follow before they can be finally accepted as established :

“*Certain things”’, hesays, *'first became clear to me by a mechanical method, although they
had to be demonstrated by geometry afterwards because their investigation by the said
method did not furnish an actual demonstration. But it is of course easier, when we have
previously acquired, by the method, some knowledge of the questions, to supply the proof
than it is to find it without any previous knowledge.”

We begin with a discussion of this work from which we can best acquire an
understanding of Archimedes’ line of thought.

The ‘‘Method" .

In 1906, the Danish philologist Heiberg, who had already provided us with
so many excellent text-editions (i.a. of Euclid and of Archimedes), went to Con-
stantinople to study a papyrus from the library of the San Sepulchri monastery in

Jerusalem. It was a so-called “palimpsest”, originally covered with Greek letters,
obviously a mathematical text with diagrams, afterwards scrape.d off by monks and
written upon anew. Heiberg succeeded in restoring and deciphering nea_rly the
whole of the old text. It contained parts of various known vs‘/orks of Archtm'edes,
but in addition the extremely important work “Method"”’, which had been believed
to be lost. We shall now briefly indicate the contents of this work.



1. Area of the parabolic segment.

The first example of Archimedes is at the same time best suited to explain his
mechanical method. Let ABI" be a parabolic segment, bounded by a straight line
AT" and a parabola ABI". Through 4,
the midpoint of AT, aline4 BEisdrawn,

2 parallel to the axis of the parabola. Now
) Archimedes states that the segment ABI’
H is 134 times as large as the triangle

ABI.

Draw AZ, parallel to 4B, toits point
of intersection Z with the tangent line
TEZ. Extend I'B beyond its intersec-
tion K with AZ and make K6 = KTI".
Now consider '@ as a lever with ful-
crum at K. Draw also M&, parallel to

Fig. 71. EA through an arbitrary point O of
the parabola.

It follows from properties of the parabola, which Archimedes assumes as known
that BA = BE, so that N = NM and KA = KZ, and furthermore
(1) EM:E0 = AT': AS = KI':KN = K@ : KN.

Now we suspend, at the other end @ of the lever, a line segment TH = Z0.
From the law of the lever, which was first obtained by Archimedes himself in his
treatise on the equilibrium of plane figures, it follows then that this segment TH
will be in equilibrium with the segment MZ, placed where it is. For, the propro-
tionality (1) states exactly that the weights of the two segments are inversely pro-
portional to their lever arms. The same conclusion holds for all segments drawn
in the triangle AI'Z, parallel to A E. In the positions which they occupy, they are in
equilibrium with their sections within the parabola, if transferred to the point 6.

Thus far everything is completely rigorous. Now comes the crux of the method:
because the triangle AI'Z consists of all lines (like M), which can be drawn in the triangle,
and because the parabolic segment ABI consists of all lines, like £0, within the parabola,
therefore the triangle AT'Z, placed where it is, will be in equilibrium with the parabolic
segment, pIaced with its centroid at @, so that K is their common center of gravity.

Now we are practically at home. For the centroid of the triangle AI'Z is at the
point X, such that KX = 14KT. Since now the lever arm K@ of the parabolic seg-

ment is three times as long as the arm KX to the centroid of the triangle, and since
the triangle is in equilibrium with the segment, the weight of the triangle must be
equal to three times that of the segment. But triangle AI'Z is twice as large as AT'K,
and hence four times as large as triangle 4 BI'; hence the parabolic segment is
equal to 4/; of triangle ABT.

Archimedes remarks himself that this argument does not give a rigorous proof of
the proposition; nevertheless it carries conviction.

' To conceive of a parabolic segment or of a triangle as the sum of infinitely many
line segments, is closely akin to the idea of Leibniz, who thought of the ntegral
Jy dx as the sum of infinitely many terms y dx. But, in contrast with Leibniz, Archi-
medes is fully aware that this conception 1s, as a matter of fact, incorrect and that
the heuristic derivation should be supplemented by a rigorous proof.

(From van der Waerden: Science Awakening I, 1961, pp.212 — 214.)
Also see Heath: The Method of Archimedes, Cambridge, 1912 and/or Japanese translation of the
works of Archimedes by Mita in Tamura (1972).



In the above discussion, some propositions in the “Quadrature of the parabola” and the “On the
equilibrium of planes” of Archimedes are used. Let us see the beginning of the “Quadrature of the

parabola”.

QUADRATURE OF THE PARABOLA.

“ ARCRIMEDES to Dositheus greeting.

“When I heard that Conon, who was my friend in his life-
time, was dead, but that you were acquainted with Conon and
withal versed in geometry, while I grieved for the loss not only
of a friend but of an admirable mathematician, I set myself the
task of communicating to you, as I had intended to send to
Conon, a certain geometrical theorem which had not been
investigated before but has now been investigated by me, and
which I first discovered by means of mechanics and then
exhibited by means of geometry. Now some of the earlier
geometers tried to prove it possible to find a rectilineal area
equal to a given circle and a given segment of a circle; and
after that they endeavoured to square the area bounded by the
section of the whole cone ® and a straight line, assuming lemmas
not easily conceded, so that it was recognised by most people
that the problem was not solved. But I am not aware that
any one of my predecessors has attempted to square the

gment bounded by a straight line and a section of a right-
angled cone [a parabola), of which problem I have now dis-
covered the solution. For it is here shown that every segment
bounded by a straight line and a section of a right-angled cone
[a parabola] is four-thirds of the triangle which has the same base
and equal height with the segment, and for the demonstration

* There appears to be some corruption here : the expression in the text is
7ds Shov 70D kdvov Touds, and it is not easy to give a natural and intelligible
meaning to it. The section of the whole cone’ might perhaps mean & section
cutting right through it, i.e. an ellipse, and the * straight line’ might be an axis
or a diameter. But Heiberg objects to the suggestion to read rds éfvywrlov
xdwou Touds, in view of the addition of xal etfelas, on the ground that the former
expression always signifies the whole of an ellipse, never a segment of it
(Quaestiones Archimedeae, p. 149).
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Proposition 2.

If in a parabola QQ' be « chord parallel to the tangent at P,
and if a straight line be drawn through P which is either itself
the axis or parallel to the axzis, and which meets QQ’ in V and
the tangent at Q to the parabola in T, then

PV=PT.

Q

Proposition 3.

If from a point on a parabola a straight line be drawn
which is either itself the axis or parallel to the axis, as PV,
and if from two other points Q, Q on the parabola straight
lines be drawn parallel to the tangent at P and meeting PV in
V, V" respectively, then

PV :PV' =QV*:Q'V"
“ And these propositions are proved in the elements of conics.*”

Proposition 4.

If Qq be the base of any segment of a parabola, and P the
vertex of the segment, and if the diameter through any other point
R meet Qq in O and QP (produced if necessary) in F, then

QV:V0=0F :FR.
Draw the ordinate RW to PV, meeting QP in K.

* i.e. in the treatises on conics by Euclid and Aristasus.
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of this property the following lemma is assumed: that the
excess by which the greater of (two) unequal areas exceeds
the less can, by being added to itself, be made to exceed any
given finite area. The earlier geometers have also used this
lemma ; for it is by the use of this same lemma that they have
shown that circles are to one another in the duplicate ratio of
their diameters, and that spheres are to one another in the
triplicate ratio of their diameters, and further that every
pyramid is one third part of the prism which has the same base
with the pyramid and equal height; also, that every cone is
one third part of the cylinder having the same base as the cone
and equal height they proved by assuming a certain lemma
similar to that aforesaid. And, in the result, each of the afore-
said theorems has been accepted® no less than those proved
without the lemma. As therefore my work now published has
satisfied the same test as the propositions referred to, I have
written out the proof and send it to you, first as investigated
by means of mechanics, and afterwards too as demonstrated by
geometry. Prefixed are, also, the elementary propositions in
conics which are of service in the proof (crouyeia xwvikd xpeiay
éxovra é Tav dmédefw). Farewell”
Proposition 1.
If from a point on a para-
bola @ straight line be drawn
which 18 either itself the axis or
parallel to the axis, as PV, and
if QQ' be a chord parallel to
the tangent to the parabola at P 7
and meeting PV in V, then
QV=VqQ.
Conversely, if QV = VQ', the
chord QQ’ will be parallel to the
tangent at P.

* The Greek of this passage is: suuBalve: 32 T0v mpoeipmuévoy Bewpnudrey
Ixagror undév Hooor TGy dvev Tobrov Toi Muuaros dwodedeyuéviw TewiwTevkévar.
Here it would seem that wemwreuxévac must be wrong and that the passive
should have been used.
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Then PV:PW=QV*': RW*;
whence, by parallels,
PQ: PK=PQ': PF.

In other words, PQ, PF, PK are in continued proportion;

therefore
PQ:PF=PF:PK
=PQ+ PF: PF+PK
=QF: KF.
Hence, by parallels,
QV:V0=0F:FR
[t is easily seen that this equation is equivalent to a change of
axes of coordinates from the tangent and diameter to new axes
consisting of the chord Qg (as axis of , say) and the diameter
through @ (as axis of y). i
o
For, if QV =a, PV=%' where p is the parameter of the
ordinates to PV.
Thus, if Q0 = 2, and RO =y, the above result gives

e _ OF
z—a OF-y’
0: %
whence - -g=—2

or py=2(2a—a)]
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Proposition §.

If Qq be the base of any segment of a parabola, P the vertex
of -the segment, and PV its diameter, and if the diameter of the
parabola through any other point R meet Qq in O and the
tangent at Q in E, then

Q0 : Og=ER: RO.

Let the diameter through R meet QP in F.
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Propositions 6, 7*.

Suppose a lever AOB placed horizontally and supported at
its middle point 0. Let a triangle BCD in which the angle O is
right or obtuse be suspended from B and O, so that C is attached
to O and CD is in the same vertical line with 0. Then, if P be
such an area as, when suspended from A, will keep the system in
equilibrium,

P=}ABCD.
Take a point £ on OB suth that BE =20F, and draw EFH

parallel to OCD meeting BC, BD in F, H respectively. Let G
be the middle point of FH.

] N

D

Then @ is the centre of gravity of the triangle BCD.

Hence, if the angular points B, ¢ be set free and the
triangle be suspended by attaching F' to E, the triangle will
hang in the same position as before, because EFG is a vertical
straight line. “For this is provedt.”

Then, by Prop. 4,
QV:V0=O0F:FR.

Since QV = Vg, it follows that
QV :q0=mOF : OR iiivvivssisiaasins 1).

Therefore, as before, there will be equilibrium.

Thus P:ABCD=0E: A0
Also, if VP meet the tangent in T, =1:3,
PT =PV, and therefore EF=OF. or P=}ABCD.

Accordingly, doubling the antecedents in (1), we have
Qq:90=0F: OR,
whence Q0: Og=ER: RO.

* In Prop. 6 Archimedes takes the separate case in which the angle BCD of
the triangle is a right angle so that C coincides with O in the figure and F with
E. He then proves, in Prop. 7, the same property for the triangle in which
BCD is an obtuse angle, by treating the triangle as the difference between two
right-angled triangles BOD, BOC and using the result of Prop. 6. I have com-
bined the two propositions in one proof, for the sake of brevity. The same
remark applies to the propositions following Props. 6, 7.

+ Doubtless in the lost book wepl {vydv. Cf. the Introduction, Chapter II.,

ad fin.

(From Heath: The Works of Archimedes, Cambridge, 1897, pp.233 — 238.)

And also, some of the propositions in the “On the equilibrium of planes” of Archimedes should be
considered,

Proposition 1.: Weights which balance at equal distances are equal.

Proposition 2.: Unequal weights at equal distances will not balance but will incline towards the
greater weight.

Proposition 3.: Unequal weights will balance at unequal distances, the greater weight being at the
lesser distance.

Proposition 4.: If two equal weights have not the same centre of gravity, the centre of gravity of
both taken together is at the middle point of the line joining their centres of gravity.

Proposition 5.: If three equal magnitudes have their centres of gravity on a straight line at equal
distances, the centre of gravity of the system will coincide with that of the middle magnitude.

Propositions 6, 7.: Two magnitudes, whether commensurable [Prop. 6] orr incommensurable [Prop.
7], balance at distances reciprocally proportional to the magnitude.

(For more information, see Heath: The Works of Archimedes, Cambridge, 1897, and/or Japanese

translation by Mita in Tamura (1972).)



The Archimedes codex

A codex of Archimedes was sold at an auction in 1998, and is being studied now. The following

is an interesting document of this research.

Reviel Netz and William Noel

THE
ARCHIMEDES
CODEX

Revealing the Blueprint
of Modern Science

(Nets and Noel: The Archimedes Codex, A Phoenix Paperback, London, Orion Books Ltd., 2008.
There is a Japanese translation of this book: V o'« =/L « X774 VT A« 7 =)L (HHE
A [gFE ! T AT AEAR] K30k, 2008.)

(“Codex” ----- book-style manuscript (handwritten work).)
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(As the above mentioned English paperback edition does not have coloured pictures, the pictures
quoted here are quoted from its Japanese translation.)

The above figures are: Archimedes Codex, or Palimpsest containing
the works of Archimedes.

(“Palimpsest” ----- the parchment (writing material made from skins
of animals) used to make it has been scraped more than once.)

Only a prayer book can be seen by visible light. The works of
Archimedes have been scraped, and then the prayer book was written.
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The works of Archimedes can be seen by ultraviolet light.

In the above picture, a figure in Archimrdes’ “On Spirals”

can be seen.
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(Right:) Only the prayer book can be seen by visible light.

(Left:) A combination of the images by visible light and ultraviolet
light. The work of Archimedes can be seen under the prayer book.

The above mentioned book “Nets and Noel: The Archimedes Codex, ( [f##t ! 7 /v

X A7 AEAK] ) is well written, and is highly recommended to read,



Eratosthenes of Cyrene
(around the latter half of the 3" century BCE)

Eratosthenes’ determination of the size of the earth
g Sonne z.Zt. der Sommersonnenwende Su-vvw"t?r' So \St[ce
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Abb. 2.44

A: Alexandria
S: Syene (Assuan)
§’: Ende des Schattens des Schattenstabs AG

Abb. 2.45

(From Gericke: Mathematik in Antike und Orient, Berlin,1984, p.149 with my notes.)

Alexandria and Syene were assumed to be in the same meridian.

At the time of summer solstice, the Sun was at the zenith of Syene.

At the same time, the arc AS’ was one-fiftieth part of its proper circle.
The distance AS = 5000 stades.

= The complete great circle of the earth = 250000 stades.



Apollonius of Perga
(aroud the latter half of the 3" century BCE)

Apollonius’ study of conic section

Abb. 2.30. Parabel.
Es ist ZHIAC.

HYPQrLo'q

ML=u, LN=v,
ZL=x, LP=y.

Abb. 2.31. Hyperbel.
Es wird AK||ZH gezeichnet.

Abb. 2.32. Ellipse.
Es wird AK||ZH gezogen.

(From Gericke: Mathematik in Antike und Orient, Berlin,1984, p.133 with my notes.)
For more detail, see Heath: Apollonius of Perga, Cambridge, Cambridge University Press, 1896.



Apollonius’ planetary model

% Planet

Epicyclic model Eccentric model (Heliocentric model)

We do not know who invented the eccentric
and epicyclic models, but the first astronomer
who mathematically treated these models
seems to be Apollonius (ca. end of the 3rd
century BC). Ptolemy wrote in his Almagest
(XII.1) that Apollonius explained the
retrograde motion of planets by the epicyclic
model as well as the eccentric model which is
mathematically equivalent to the epicyclic

model.



Hipparchus of Nicaea
(2" century BCE)

The precession of the equinoxes:

Hipparchus discovered the precession of the
equinoxes. The equinoxes move westward along the

ecliptic relative to the fixed stars.

The equation of centre of the sun and moon
was explained by Hipparchus wusing the
eccentric model as well as the epicyclic model
which 1s mathematically equivalent to the
eccentric model. Ptolemy explained the
method of Hipparchus in his Almagest
(ITI~IV). The model of Hipparchus is that
the sun (or moon) revolves along an eccentric
circle with a constant speed. Let this model

be called “Simple eccentric model”.
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Simple eccentric
model of the

solar orbit

According to the Almagest (II1.4), the solar theory of
Hipparchus 1is as follows. Hipparchus based on the
observational data that the period from the vernal equinox to the
summer solstice is 94% days, and that the period from the
summer solstice to the autumnal equinox is 92% days, and
determined the eccentric distance £ and the longitude of the
apogee II of the eccentric circle (radius = 1). If the length of a
year is assumed to be 365% days, the period from the autumnal
equinox to the vernal equinox becomes 178% days. From these
data, ¢ and Il can be determined by plane geometry. In this
model, the eccentric distance € is a double of the modern
eccentricity.

According to the Almagest (IV), Hipparchus also determined
the orbit of the moon (with certain error) from the observational
data of three lunar eclipses.



Antikythera mechanism
(1% century BCE)

Some fragments of the Antikythera mechanism were discovered
from a shipwreck (1% century BCE) at Antikythera in the
Mediterranean in 1901. This is a kind of astronomical machine.
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‘Dizzyingly brilliant’
DAILY TELEGRAPH

(Marchant, Jo: Decoding the Heavens, first published in Great Britain in 2008 by William
Heinemann; Paperback: London, Windmill Books, 2009. Japanese translation: ~’ = — + ~v—F ¥
b OKRKER) T7oT4%7 5 HEFV L T7Dar B a—a] CEEEK, 2009)
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A fragment of the Antikythera mechanism.
(The above mentioned English paperback edition has coloured pictures, but | quote pictures from

Japanese translation just for my convenience.)
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Reconstructions of the Antikythera mechanism.

(Right:) Derek de Solla Price.
(Left above:) Allan Bromley.
(Left below:) Michael Wright.

The above mentioned book “Marchant, Jo: Decoding the Heavens, ( [7 > 7 4 %7 5
EREV T va—4%])” is well written, and is recommended to read,

Philosophical schools in the age of Hellenism

Besides Platonism and Peripateticism (Aristoterianism), there were philosophical schools in the
age of Hellenism, such as Epicureanism, Stoicism, Pyrrhonism (Skepticism) etc.

Epicureans developed atomism.  Stoics had their own natural philosophy.



V. Greco-Roman Period

Heron of Alexandria (around 60 CE)

Applied geometry and applied mechanics.

Measuring instruments and machines.

Ptolemy of Alexandria
(2" century CE)

Ptolemy (Claudius Ptolemaeus) was a (great
astronomer, mathematician and astronomer. He
established Ptolemaic geocentric planetary system.

Ptolemy’s works:

Almagest (a treatise of astronomy)
The firsts English translation is Taliaferro (1952). A new scholarly translation is Toomer (1998).

For its Japanese translation, see Yabuuti (1949-58).
Geography

See Berggren and Jones (2000), and/or Nakatsukasa (1986) (Japanese translation of the text).
Harmonics (on musical theory)

See Barker: Scientific Method in Ptolemys ‘Harmonics’, Cambridge, (2000), and/or Yamamoto
(2008) (Japanese translation).
Tetrabiblos (on astrology)

(See Ptolemy Tetrabiblos, (Greek and English), Loeb Classical Library, 1940.)

----- And some other works.



Ptolemaic geocentric planetary system

Further development of the theories of Apollonius, Hipparchus etc.
The most authentic theory of Western astronomy until Copernican theory.

Equant model:

Ptolemy created the “equant” model for the deferent of the
planetary orbits. In this model, the distance of the deferent (eccentric
orbit) is almost the same as the actual elliptic orbit, and the apparent
diameter of its epicycle is harmonious with the actually observed
elongation of the planets from the supposed centre of the epicycle. In
order to make the revolution of the centre of the epicycle correspond to
the actual inequality, which corresponds to the equation of center of
the Keplerian motion, the centre of the epicycle revolves at a constant
angular velocity around the “equant” (E in Fig.(C)). It is seen that
this “equant” model gives a quite good result. Solar orbit of
Ptolemywas the same as the simple eccentric model of Hipparchus.
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Ptolemy also developed the theory of lunar motion.

Firstly, the “equation of centre” is explained by an epicyclic model, obtained from three
observations of lunar eclipses, as follows.

This method is originated from Hipparchus’ method.
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Ptolemy further considered the “evection”, and made a model of lunar motion as follows

. Thisis
a good model for lunar longitude, but quite inaccurate regarding the distance to the moon.
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For detailed mathematical discussion, see Ohashi, Yukio: “Mathematical structure of the eccentric

and epicyclic models in ancient Greece and India”, in Yadav and Singh (eds.): History of the
Mathematical Sciences Il, Cambridge, Cambridge Scientific Publishers, 2011, pp.83 — 102.



A map based on the Geography of Ptolemy.
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PLATE 6. Map of the world in Ptolemy’s second projection (Ulm edition of 1482)

(From Berggren, J. Lennart and Alexander Jones: Ptolemy 5 Geography, An Annotated Translation of
the Theoretical Chapters, Princeton, Princeton University Press, 2000. For the maps based on
Ptolemy’s Geography, alsosee [~ kL~ A A HRXK ], A¥ENE, 1978.)

The geocentric system of Ptolemy was the most precise mathematical
astronomy even after the system of Copernicus. Copernicus used the
data of Ptolemy, and the accuracy of the theory of Copernicus was
almost the same as the accuracy of the theory of Ptolemy. More
precise theories were created by the assistants of Tycho Brahe -----
Longomontanus and Kepler!



Diophantus of Alexandria (around 250 CE ?)

Diophantus discussed algebraic problems in his

Arithmetica.

(For detail, see Heath: Diophantus of Alexandria, Cambridge, 1885.)

Pappus of Alexandria (fl. 320 CE)

Pappus composed a handbook of Greek geometry.

Theon of Alexandria and his daughter
Hypatia (d. 418 CE)

Hypatia was a mathematician, astronomer, Neoplatonist.
She was assassinated by mob of Christians in 418 CE. This
is the end of the tradition of Greek mathematics and

astronomy in Alexandria.

(For more detail, see Dzielska, Maria (Translated by F. Lyra): Hypatia of Alexandria, Cambridge,
Mass., Harvard University Press, 1995.)



Roman science and technology
Julian Calendar
----- Julius Caesar (100 — 44 BCE) established in 45 BCE.
1 year = 365Y4 days.
Egyptian solar calendar was utilized.
One intercalary day is inserted in every 4 years,
(reqularly inserted since 8 CE (at the time of Emperor

Augustus)).

(For the history of Western calendar, see Duncan: Calendar, New York, 1998.)

Roman technology
Vitruvius (1* century BCE) ----- On Architecture.

The earliest treatise on architecture and related technology.
Mathematics and astronomy were also utilized in architecture.
(For its English translation, see Vitruvius: The Ten Books on Architecture, (tr. by Morgan), (Latin
text and English translation), Cambridge, 1914, or Vitruvius on Architecture, 2 vols, (Loeb Classical
Library), (Latin text and English translation), Cambridge, Mass., Harvard University Press, and
London, William Heineman Ltd, 1931-1934 (See below.). For its Japanese translation, see Morita
(1979).)
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VITRUVII VITRUVIUS
DE ARCHITECTURA ON ARCHITECTURE
LIBER PRIMUS BOOK 1
Prerace

1 Cum divina tua mens et numen, imperator Caesar, 1. Wuen your Highness’s divine mind and power,
imperio potiretur orbis terrarum invictaque virtute O Caesar, gained the empire of the world,! Rome
cunctis hostibus stratis triumpho victoriaque tua gloried in your triumph and victory. For all her
cives gloriarentur et gentes omnes subactae tuum enemies were crushed by your invincible courage
P nutum populusque R et senatus and all mankind obeyed your bidding; the Roman
lib timore plissimis tuis itationi Fcople and senate were not only freed from fear ? but
iliisque gub etur, non deb tantis ollowed your guidance, inspired as it was by a
occupationibus, de architectura scripta et magnis genemns imagination. Amid such affairs I shrank
cogitationibus explicata edere, metuens, ne non apto rom publishing my writings on architecture in
tempore interpellans subirem tui animi offensionem. which I displayed designs made to a large scale, for I
2 Cum vero adtenderem te non solum de vita feared lest by interrupting at an inconvenient time,

communi omnium curam publicaeque rei constitu- 1 should be found a hindrance to your thoughts.
tionem habere sed etiam de opportunitate publicorum 2. But I observed that you cared not only about
aedificiorum, ut civitas per te non solum provinciis the common life of all men, and the constitution of
esset aucta, verum etiam ut maiestas imperii publi- the state, but also about the provision ? of suitable
corum aedificiorum egregias haberet auctoritates, public buildings; so that the state was not only
non putavi praetermittendum, quin primo quoque made greater through you by its new provinces,

but the majesty of the empire also was expressed
through the eminent dignity of its public build-

* Augustus’ admiral defested Antony and Cleopatra at

Actium 31 B.c. ings. Hence I conceived that the opportunity
2 The young Octavian had shared in the proscription of :

42 8.c., but his triumph of 31, was followed by an amnesty. ? Augustus boasted that he found a Rome of brick, and left

2 one of marble.

- 3

(The beginning of Vitruvius’On Architecture (Loeb Classical Library), Vol.1.

And also, water supply was highly developed in Roman Empire.

(See Frontinus, (ed. and tr. by Herschel), The Two books on the Water Supply of the City of Rome,
Boston, Dana Estes and Company, 1899, and/or Frontinus, (Loeb Classical Library), 1925, and/or
Imai (1987) (in Japanese).)
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