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Instructed by Shmuel Wimer 
Eng. School, Bar-Ilan University 
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(Some material copied/taken/adapted from  
Harris’ lecture notes) 
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Outline 

 Gate and Diffusion Capacitance 

 RC Delay Models 

 Power and Energy 

 Dynamic Power 

 Static Power 

 Low Power Design 
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MOSFET Capacitance 

gate to 

substrate 

gate to 

source 
gate to 

drain 
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 Any two conductors separated by an insulator have 

capacitance 

 Gate to channel capacitor is very important 

– Creates channel charge necessary for operation 

 Source and drain have capacitance to body 

– Across reverse-biased diodes 

– Called diffusion capacitance because it is 

associated with source/drain diffusion 
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Gate Capacitance 

 Approximate channel as connected to source 

 Cgs = eoxWL/tox = CoxWL = CpermicronW 

 Cpermicron is typically about 2 fF/mm  
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Accumulation occurs 

when Vg is negative (for 

P material).  Holes are 

induced under the oxide.  

Cgate = CoxA where Cox = 

eSiO2eo/tox 



Dec 2010 Performance of CMOS Circuits 7 

Depletion occurs 

when Vg is near zero 

but < Vtn.  Here the 

Cgate is given by CoxA 

in series with 

depletion layer 

capacitance Cdep 
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Inversion occurs when 

Vg is positive and > 

Vtn (for P material).  A 

model for inversion in 

comprised of Cox A 

connecting from gate-

to-channel and Cdep 

connecting from 

channel-to-substrate. 
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Normalized gate 

capacitance versus 

Gate voltage Vgs. 

High freq behavior 

is due to the 

distributed 

resistance of 

channel 
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Normalized Experimental MOS Gate Capacitance 

Measurements vs Vds, Vgs 

For Vds = 0, the total gate capacitance Cox A splits 

equally to the drain and source of the transistor.  
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For Vds > 0, the gate capacitance tilts more toward 

the source and becomes roughly 2/3 CoxA to the 

source and 0 to the drain for high Vds. 
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Higher Vgs – Vt forces this tilting to occur later, 

since the device is linear up to Vgs – Vt = Vds. 
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MOS Transistor Gate Capacitance Model 

Gate capacitance has different components in different modes, but total 

remains constant. 
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Gate capacitance has different components in different modes, but total 

remains constant. 
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Diffusion Capacitance 

 Csb, Cdb 

 Undesirable, called parasitic capacitance 

 Capacitance depends on area and perimeter 

– Use small diffusion nodes 

– Comparable to Cg  

 for contacted diff 

– ½ Cg for uncontacted 

– Varies with process 
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Diffusion Capacitance (Cont’d) 

best 

worst 
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Effective Resistance 

 Shockley models have limited value 

– Not accurate enough for modern transistors 

– Too complicated for much hand analysis 

 Simplification: treat transistor as resistor 

– Replace Ids(Vds, Vgs) with effective resistance R 

• Ids = Vds/R 

– R averaged across switching of digital gate 

 Too inaccurate to predict current at any given time 

– But good enough to predict RC delay 
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RC Delay Model 

 Use equivalent circuits for MOS transistors 

– Ideal switch + capacitance and ON resistance 

– Unit nMOS has resistance R, capacitance C 

– Unit pMOS has resistance 2R, capacitance C 

 Capacitance proportional to width 

 Resistance inversely proportional to width 
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RC Values 

 Capacitance 

– C = Cg = Cs = Cd = 2 fF/mm of gate width 

– Values similar across many processes 

 Resistance 

– R  6 KW*mm in 0.6um process 

– Improves with shorter channel lengths 

 Unit transistors 

– May refer to minimum contacted device (4/2 l) 

– Or maybe 1 mm wide device 

– Doesn’t matter as long as you are consistent 
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Inverter Delay Estimate 

 Estimate the delay of a fanout-of-1 inverter 

d = 6RC 
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Transient Response 

 DC analysis tells us Vout if Vin is constant 

 Transient analysis tells us Vout(t) if Vin(t) changes 

– Requires solving differential equations 

 Input is usually considered to be a step or ramp 

– From 0 to VDD or vice versa 
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Inverter Step Response 

 Ex: find step response of inverter driving load cap 
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Inverter Step Response 

 Ex: find step response of inverter driving load cap 
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Delay Definitions 

rising delay falling delay 

high to low 

propagation 

delay 

low to high 

propagation 

delay 
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Delay Definitions (Cont’d) 

 tpdr: rising propagation delay 

– Maximum time from input crossing 50% to rising 

output crossing 50% 

 tpdf: falling propagation delay 

– Maximum time from input crossing 50% to falling 

output crossing 50% 

 tpd: average propagation delay 

– tpd = (tpdr + tpdf)/2 

 tr: rise time 

– From output crossing 0.2 VDD to 0.8 VDD 
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Delay Definitions (Cont’d) 

 tf: fall time 

– From output crossing 0.8 VDD to 0.2 VDD 

 tcdr: rising contamination delay 

– Minimum time from input crossing 50% to rising 

output crossing 50% 

 tcdf: falling contamination delay 

– Minimum time from input crossing 50% to falling 

output crossing 50% 

 tcd: average contamination delay 

– tcd = (tcdr + tcdf)/2 
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Simulated Inverter Delay 

 Solving differential equations by hand is too hard 

 SPICE simulator solves the equations numerically 

– Uses more accurate I-V models too! 

 But simulations take time to write 
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Delay Estimation 

 We would like to be able to easily estimate delay 

– Not as accurate as simulation 

– But easier to ask “What if?” 

 The step response usually looks like a 1st order RC 
response with a decaying exponential. 

 Use RC delay models to estimate delay 

– C = total capacitance on output node 

– Use effective resistance R 

– So that tpd = RC 

 Characterize transistors by finding their effective R 

– Depends on average current as gate switches 
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RC Delay Model 

 Use equivalent circuits for MOS transistors 

– Ideal switch + capacitance and ON resistance 

– Unit nMOS has resistance R, capacitance C 

– Unit pMOS has resistance 2R, capacitance C 

 Capacitance proportional to width 

 Resistance inversely proportional to width 
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Example: 3-input NAND 

 Sketch a 3-input NAND with transistor widths 

chosen to achieve effective rise and fall resistances 

equal to a unit inverter (R). 

2 2 2 
In worst case of P 

only one device is 

opened. 

3 

3 

3 

all N devices must 

be opened. 
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3-input NAND Caps 

 Annotate the 3-input NAND gate with gate and 

diffusion capacitance. 
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3-input NAND Caps (Cont’d) 

 Annotate the 3-input NAND gate with gate and 

diffusion capacitance. 
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Elmore Delay 
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Elmore Delay 

 ON transistors look like resistors 

 Pullup or pulldown network modeled as RC ladder 

 Elmore delay of RC ladder 
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For a step input Vin, the delay at any node can be estimated with the  

Elmore delay equation  tDi =  Cj   Rk 

For example, the Elmore delay at node 7 is give by: 

R1 ( C1 + C2 + C3 + C4 + C5+ C6+ C7 + C8 ) + 

R6 ( C6+ C7+ C8 )+ 

R7 ( C7 + C8) 
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Example: 2-input NAND 

 Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates. 

 6 4pdrt h RC 
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Example: 2-input NAND 

 Estimate rising and falling propagation delays of a 

2-input NAND driving h identical gates. 
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Delay Components 

 Delay has two parts 

– Parasitic delay 

• 6 or 7 RC 

• Independent of load  

– Effort delay 

• 4h RC 

• Proportional to load capacitance 
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Contamination Delay 

 Best-case (contamination) delay can be substantially 

less than propagation delay. 

 Ex: If both inputs fall simultaneously 
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Diffusion Capacitance 

 we assumed contacted diffusion on every s / d 

 Good layout minimizes diffusion area 

 Ex: NAND3 layout shares one diffusion contact 

– Reduces output capacitance by 2C 

– Merged uncontacted diffusion might help too 
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Layout Comparison 

 Layout representation by stick diagram. What CKT? 

 Which layout is better? 
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 Power is drawn from a voltage source attached to 

the VDD pin(s) of a chip. 

 

 Instantaneous Power: 

 

 Energy: 

 

 Average Power: 

Power and Energy 
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Dynamic Power 

 Dynamic power is required to charge and discharge 

load capacitances when transistors switch 

 One cycle involves a rising and falling output 

 On rising output, charge Q = CVDD is required 

 On falling output, charge is dumped to GND 

 This repeats Tfsw times over an interval of T 

C 
f 
sw 

i 
DD 

(t) 

VDD 
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Activity Factor 

 Suppose the system clock frequency = f 

 Let fsw = af, where a = activity factor 

– If the signal is a clock, a = 1 

– If the signal switches once per cycle, a = ½ 

– Static gates: 

• Depends on design, but typically a = 0.1 

– Dynamic gates:  

• Switch either 0 or 2 times per cycle, a = ½ 

 

 Dynamic power: 
2

dynamic DDP CV fa
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Short Circuit Current 

 When transistors switch, both nMOS and pMOS 

networks may be momentarily ON at once 

 Leads to a blip of “short circuit” current. 

 < 10% of dynamic power if rise/fall times are 

comparable for input and output 
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Power Dissipation Sources 

 Ptotal = Pdynamic + Pstatic 

 Dynamic power: Pdynamic = Pswitching + Pshortcircuit 

– Switching load capacitances 

– Short-circuit current 

 Static power: Pstatic = (Isub + Igate + Ijunct + Icontention)VDD 

– Sub-threshold leakage 

– Gate leakage 

– Junction leakage 

– Contention current (ratioed logic) 



Dec 2010 Performance of CMOS Circuits 52 

Dynamic Power Example 

 1 billion transistor chip 

– 50M logic transistors 

• Average width: 12 l 

• Activity factor = 0.1 

– 950M memory transistors 

• Average width: 4 l 

• Activity factor = 0.02 

– 1.0 V 65 nm process 

– C = 1 fF/mm (gate) + 0.8 fF/mm (diffusion) 

 Estimate dynamic power consumption @ 1 GHz.  
Neglect wire capacitance and short-circuit current. 
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    6
logic 50 10 12 0.025 / 1.8 / 27C m fF m nFl m l m  

Power Estimate Ex (Cont’d) 

   
2

dynamic logic mem0.1 0.02 1.0 1.0 6.1WP C C GHz    

    6
mem 950 10 4 0.025 / 1.8 / 171C m fF m nFl m l m  
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Dynamic Power Reduction 

   

 Try to minimize: 

– Activity factor 

– Capacitance 

– Supply voltage 

– Frequency 

2
switching DDP CV fa
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Activity Factor Estimation 

 Let Pi = Prob(node i = 1) 

 ai = Pi *(1- Pi) 

 Completely random data has P = 0.5 and a = 0.25 

 Data is often not completely random 

– e.g. MSBs of 64-bit words in memory address 

bus. MSBs of data representing measurements of 

physical phenomena. 

 Data propagating through ANDs and ORs has lower 

activity factor 

– Depends on design, but typically a ≈ 0.1 
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Switching Probability 

What is the switching probability? 
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Example 

 A 4-input AND is built out of two levels of gates 

 Estimate the activity factor at each node if the inputs 

have P = 0.5 
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Clock Gating 

 The best way to reduce the activity is to turn 

off the clock to registers in unused blocks 

– Saves clock activity (a = 1) 

– Eliminates all switching activity in the block 

– Requires determining if block will be used 
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Capacitance 

 Gate capacitance 

– Fewer stages of logic 

– Small gate sizes 

 Wire capacitance 

– Good floorplanning to keep communicating 

blocks close to each other 

– Drive long wires with inverters or buffers rather 

than complex gates 

 



Dec 2010 Performance of CMOS Circuits 60 

Voltage / Frequency 

 Run each block at the lowest possible 
voltage and frequency that meets 
performance requirements 

 Voltage Domains 
– Provide separate supplies to different blocks 

– Level converters required when crossing  

 from low to high VDD domains 

 

 Dynamic Voltage Scaling 
– Adjust VDD and f according to  

 workload 
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Static Power 

 Static power is consumed even when chip is 

quiescent 

– Ratioed circuits burn power in fight between ON 

transistors. Occurs when output is low (0). 

– Leakage draws power from nominally OFF 

devices 
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Static Power Example 

 Revisit power estimation for 1 billion transistor chip 

 Estimate static power consumption 

– Subthreshold leakage 

• Normal Vt:   100 nA/mm 

• High Vt:   10 nA/mm 

• High Vt used in all memories and in 95% of 

logic gates 

– Gate leakage  5 nA/mm 

– Junction leakage negligible 
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Solution 

    
t

6 6
normal-V 50 10 12 0.025 m / 0.05 0.75 10  mW l m l m   

  P 584 mA 275 mA 1.0 V 859 mWstatic   

        
t

6 6
high-V

6

50 10 12 0.95 950 10 4 0.025 m /

              109.25 10  m

W l l m l

m

     
 



t tnormal-V high-V100 nA/ m+ 10 nA/ m / 2 584 mAsubI W Wm m     

 
t tnormal-V high-V 5 nA/ m / 2 275 mAgateI W W m    

 



Leakage Control 

 

 

 

 Leakage and delay trade off 

– Aim for low leakage in sleep and low delay in 
active mode 

 To reduce leakage: 

– Increase Vt: multiple Vt 

• Use low Vt only in critical circuits 

– Increase Vs: stack effect 

• Input vector control in sleep 
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Gate Leakage 

 Extremely strong function of tox and Vgs 

– Negligible for older processes 

– Approaches subthreshold leakage at 65 nm and 

below in some processes 

 An order of magnitude less for pMOS than nMOS 

 Control leakage in the process using tox > 10.5 Å 

– High-k gate dielectrics help 

– Some processes provide multiple tox 

• e.g. thicker oxide for 3.3 V I/O transistors 

 Control leakage in circuits by limiting VDD 



Power Gating 

 Turn OFF power to blocks when they are idle to 
save leakage 

– Use virtual VDD (VDDV) 

– Gate outputs to prevent  

 invalid logic levels to next block 

 

 Voltage drop across sleep transistor degrades 
performance during normal operation 

– Size the transistor wide enough to minimize 
impact 

 Switching wide sleep transistor costs dynamic power 

– Only justified when circuit sleeps long enough 
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Low Power Design 

 Reduce dynamic power 

 a: clock gating, sleep mode 

– C: small transistors (esp. on clock), short wires  

– VDD: lowest suitable voltage 

– f: lowest suitable frequency 

 Reduce static power 

– Selectively use ratioed circuits (minimize) 

– Selectively use low Vt devices (minimize) 

– Leakage reduction:  

 stacked devices, body bias, low temperature 


