
6 Spaces of Constant Sectional Curvature.

Orthonormal Frame and Connection Forms. Let (M, g)
be an orientable Riemannian m-manifold, and (U ;u1, . . . , um) a
local coordinate neighborhood.

Lemma 6.1. There exists a m-tuple of vector fields {e1, . . . , em}
on M which forms a positively-oriented orthonormal basis of
TPM for each P ∈ U .

Proof. The procedure of the Gram-Schmidt orthogonalization
works for the m-tuple of vector fields {∂/∂uj}mj=1 on U .

We call such a m-tuple {ej}mj=1 a positively-oriented or-
thonormal frame field, or a frame field for short, on U .

Lemma 6.2. Let {e1, . . . , em} be an orthonormal frame field
on U ⊂ M . Then there exist C∞-differential 1-forms ωj

i (i, j =
1, . . . ,m) satisfying

∇Xei =

m∑

j=1

ωj
i (X)ei (i = 1, . . . ,m),(6.1)

ωj
i = −ωi

j (i, j = 1, . . . ,m)(6.2)

for an arbitrary vector field X on U , where ∇ denotes the co-
variant derivative (4.12).

Proof. We set
ωj
i (X) := g (∇Xei, ej)
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for X ∈ X(U). So by (4.15), ωj
i (fX) = fωj

i (X) holds for

f ∈ C∞(U). Hence ωj
i (X)(P) depends only on XP because

of Lemma 5.3. Then each ωj
i defines a 1-form on U . Smooth-

ness of ωj
i is obvious. Since {ej} is an orthonormal basis, (6.1)

follows.
Moreover, since g(ei, ej) = δij is constant for each i and j,

(4.18) implies

0 = Xg(ei, ej) = g (∇Xei, ej) + g (ei,∇Xej)

= g

(
m∑

k=1

ωk
i (X)ek, ej

)
+ g

(
ei,

m∑

k=1

ωk
j (X)ek

)

=
m∑

k=1

(
ωk
i (X)δkj + ωk

j (X)δik
)
= ωj

i (X) + ωi
j(X).

Hence (6.2) follows.

We call {ωj
i } in Lemma 6.2 the connection forms with re-

spect to the frame {ej}.
By (6.2),

(6.3) ω :=




ω1
1 . . . ω1

m
...

. . .
...

ωm
1 . . . ωm

m


 satisfies ω + tω = O,

in other words, ω is a skew-symmetric matrix-valued 1-form.

Gauge transformations and the Curvature Form. Let
{e1, . . . , em} and {f1, . . . ,fm} be two positively-oriented or-
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thonormal frames on U ⊂ M . Then there exists a smooth map
G = (Gij) : U → SO(m) such that8

(6.4) (e1, . . . , em) = (f1, . . . ,fm)G

=

(
m∑

a=1

G1afa, . . . ,
m∑

a=1

Gmafa

)
.

Let ω = (ωj
i ) (resp. ω̃ = (ω̃b

a)) be the connection forms with
respect to the orthonormal frame {ej} (resp. {fa}). The

Lemma 6.3. Under the situation above, it holds that

(6.5) ω̃ = G−1dG+G−1ωG.

Proof. By definition,

∇ (e1, . . . , em) = (e1, . . . , em)ω, and

∇ (f1, . . . ,fm) = (f1, . . . ,fm)ω̃

hold. Hence, by (4.16), it holds that

(f1, . . . ,fm)ω̃ = (e1, . . . , em)Gω̃

(f1, . . . ,fm)ω̃ = ∇
(
(e1, . . . , em)G

)

= (∇(e1, . . . , em))G+ (e1, . . . , em)dG

8As defined in Section 1, SO(m) = {A ∈ Mm(R) ; tAA = AtA =
id, detA = 1} denotes the special orthogonal group. A map G : U → SO(m)
is said to be smooth (of class C∞) if it is of class C∞ as a map into Mm(R),
the set of m×m-real matrices, which is identified with Rn2

.
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= (e1, . . . , em)ωG+ (e1, . . . , em)dG

= (e1, . . . , em) (ωG+ dG) ,

where ∇v means a 1-form X 7→ ∇Xv. Since e1, . . . , em are
linearly independent, the conclusion follows.

The formula (6.5) is called the Gauge transformation of the
connection forms.

Definition 6.4. The curvature form with respect to the frame
field {ej} is a skew-symmetric matrix-valued 2-form

(6.6) Ω := dω + ω ∧ ω =

(
dωj

i +
m∑

k=1

ωk
i ω

j
k

)

i,j=1,...,m

.

Lemma 6.5. Under the transformation as in (6.4), the cur-

vature form Ω and Ω̃ with respect to the frame field {ej} and
{fa}, respectively, satisfy

Ω̃ = G−1ΩG.

Proof. Problem 6-1.

Lemma 6.6. The curvature form Ω = (Ωj
i ) with respect to the

frame field {ej} satisfies

Ωj
i (X,Y ) = R(X,Y, ei, ej),

where R is the Riemann-Christoffel curvature tensor, and X, Y
are vector fields.
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Proof. Since {ej} is an orthonormal basis, it holds that

g(∇Xej , ek) = Xg(ej , ek)− g(ej ,∇Xek) = −g(ej ,∇Xek)

holds for j, k = 1, . . . ,m. Then we have

Ωj
i (X,Y ) = dωj

i (X,Y ) +

m∑

k=1

(
ωk
i (X)ωj

k(Y )− ωk
i (Y )ωj

k(Y )
)

=Xωj
i (Y )− Y ωj

i (X)− ωj
i ([X,Y ])

m∑

k=1

(
ωk
i (X)ωj

k(Y )− ωk
i (Y )ωj

k(Y )
)

=Xg(∇Y ei, ej)− Y g(∇Xei, ej)− g(∇[X,Y ]ei, ej)

+
m∑

k=1

(
g(∇Xei, ek)g(∇Y ek, ej)− g(∇Y ei, ek)g(∇Xek, ej)

)

=g(∇X∇Y ei, ej) + g(∇Y ei,∇Xej)

− g(∇Y ∇Xei, ej)− g(∇Xei,∇Y ej)− g(∇[X,Y ]ei, ej)

−
m∑

k=1

(
g(∇Xei, ek)g(ek,∇Y ej)− g(∇Y ei, ek)g(ek,∇Xej)

)

=R(X,Y, ei, ej),

where we used the relation
m∑

k=1

g(v, ek)g(w, ek) = g(v,w).

Space of Constant Sectional Curvature. The goal of this
lecture is to prove the following
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Theorem 6.7. Let U ⊂ Rm be a simply connected domain
and let g be a Riemannian metric on U with constant sectional
curvature k. Then there exists a local diffeomorphism

f : U −→ Mm(k)

such that the Riemannian metric g coincide with the metric on
U induced from Mm(k) by f , where

Mm(k) :=





Sm(k) (when k > 0, cf. Example 5.16),

Rm (when k = 0, the Euclidean m-space),

Hm(k) (when k < 0, cf. Example 5.17).

Remark 6.8. The theorem can be generalized for simply con-
nected Riemannian manifolds (M, g) of constant sectional cur-
vature. Moreover, one can show that f is injective. Hence, we
can say that a simply connected Riemannian m-manifold (M, g)
can be identified as a subset of Mm(k). In particular, if (M, g)
is complete, it coincides with Mm(k).

Proof of Theorem 6.7 (for the case k = 0): This is an al-
ternative proof of Theorem 3.13 in Section 3. Take an orthonor-
mal frame field {e1, . . . , em} on U , and let ω be the connection
form with respect to the basis. Fix a base point P0 ∈ U , and
consider the system of differential equations

(6.7)
∂F
∂uj

= Fωj , F(P0) = id (j = 1, . . . ,m),

where

(6.8) ωj := ω

(
∂

∂uj

)
.
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By Lemma 6.6, the assumption k = 0 implies

O =

(
R

(
∂

∂ui
,

∂

∂uj
, ek, el

))

k,l=1,...,m

= (dω + ω ∧ ω)

(
∂

∂ui
,

∂

∂uj

)
=

∂ωj

∂ui
− ∂ωi

∂uj
+ ωiωj − ωjωi.

Hence by Theorem 2.5, there exists a unique solution F of (6.7).
Moreover, since ωj is skew-symmetric because of (6.3), the so-
lution gives a smooth map F : U → SO(m). Decompose F into
the column vectors as F = (x1, . . . ,xn). Since F is an orthog-
onal matrix, {xj(P)} is an orthonormal basis at each P.

Define an Rm-valued 1-form

φ :=
m∑

i=1

(
m∑

k=1

gki xk

)
dui, gki = g

(
∂

∂ui
, ek

)
,

where {ej} is the orthonormal frame on U we took in the be-
ginning of the proof. Then φ is a closed on U . In fact, by (4.18)
and (4.17), we have

∂

∂uj

(
m∑

k=1

gki xk

)
=

m∑

k=1

(
∂

∂uj
g

(
∂

∂ui
, ek

)
+ gki xk

)

=
m∑

k=1

[(
g

(
∇ ∂

∂uj

∂

∂ui
, ek

)
+ g

(
∂

∂ui
,∇ ∂

∂uj
ek

))
xk + gki

∂xk

∂uj

]

=
m∑

k=1

g

(
∇ ∂

∂uj

∂

∂ui
, ek

)
xk +

m∑

k=1

g

(
∂

∂ui
,

m∑

l=1

ωl
k

(
∂

∂uj

)
el

)
xk
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+
m∑

k,l=1

gki ω
l
k

(
∂

∂uj

)
xl

=
m∑

k=1

[
g

(
∇ ∂

∂uj

∂

∂ui
, ek

)
+

m∑

l=1

(ωl
k + ωk

l )

(
∂

∂uj

)
gli+

]
xk

=
m∑

k=1

[
g

(
∇ ∂

∂uj

∂

∂ui
, ek

)]
xk,

∂

∂ui

(
m∑

k=1

gkjxk

)
=

m∑

k=1

[
g

(
∇ ∂

∂ui

∂

∂uj
, ek

)]
xk.

Hence by (4.17), we have

∂

∂uj

(
m∑

k=1

gki xk

)
=

∂

∂ui

(
m∑

k=1

gkjxk

)
,

that is, dφ = 0. Hence by Poincaré’s lemma, there exists
f : U → Rm satisfying df = φ. This f is desired one. To
show this, it is sufficient to show

(6.9) df(ej) = xj , (j = 1, . . . ,m).

In fact, if (6.9) holds,

g(ei, ej) = δij = ⟨xi,xj ,=⟩ ⟨df(ei), df(ej), , ⟩

and then the induced metric coincides with g. We show (6.9):

df(ej) = φ(ej) =
m∑

i=1

(
m∑

k=1

gki xk

)
dui(ej)
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=
m∑

i,k=1

g

(
∂

∂ui
, ek

)
dui(ej)xk

=
m∑

k=1

g

(
m∑

i=1

dui(ej)
∂

∂ui
, ek

)
xk =

m∑

k=1

g(ej , ek)xk = xj .

Here, we used the formula

m∑

i=1

dui(v)
∂

∂ui
= v.

Proof of Theorem 6.7 (for the case k > 0): Since k > 0,
there exists a real number c such that k = c2. Taking the
orthonormal frame field (e1, . . . , em) on U , we set

(6.10) ω̂j :=

(
0 −ctgj

cgj ωj

)
,

for each j = 1, . . . ,m, which is an (n + 1) × (n + 1)-skew sym-
metric matrix-valued function, here

(6.11) gj :=

(
g1j
...gmj

)
=




g(∂/∂uj , e1)
...

g(∂/∂uj , em)




and ωj is as in (6.8). By the assumption, (5.9) holds. Hence
one can show easily that

∂ω̂j

∂ui
− ∂ω̂i

∂uj
+ ω̂iω̂j − ω̂jω̂i = O
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for each i, j = 1, . . . ,m. Hence there exists a smooth map

F = (x0,x1, . . . ,xm) : U → SO(m+ 1)

satisfying
∂F
∂uj

= Fω̂j (j = 1, . . . ,m)

with F(P0) = id. Then

f :=
1

c
x0

is the desired map. In fact,

df(ej) = xj (j = 1, . . . ,m)

holds.

Proof of Theorem 6.7 (for the case k < 0): Since k < 0,
there exists a real number c such that k = −c2. Taking the
orthonormal frame field (e1, . . . , em) on U , we set

(6.12) ω̂j :=

(
0 ctgj

cgj ωj

)
,

for each j = 1, . . . ,m, which is an (n+1)×(n+1)-matrix-valued
function, here

(6.13) gj :=

(
g1j
...gmj

)
=




g(∂/∂uj , e1)
...

g(∂/∂uj , em)



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and ωj is as in (6.8). Since

Y ωj − tωjY = 0 (j = 1, . . . ,m)

holds, where Y := diag(−1, 1, . . . , 1). This implies that there
exists

F : U → SO(m+ 1, 1),

where

SO(m+ 1, 1) =
{
a = (aij)i,j=0,...,m ∈ Mn(R) ; taY a = Y, det a = 1, a00 > 0.

}

Then there exists F : U → SO(m+ 1) satisfying

∂F
∂uj

= Fω̂j (j = 1, . . . ,m)

with F(P0) = id. Then

f :=
1

c
x0

is the desired map.
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Exercises

6-1 Prove Lemma 6.5.

6-2 Prove Theorem 6.7


