1 Linear Ordinary Differential Equations
Preliminaries: Matrix Norms. Denote by M, (R) the set
of n X m matrix with real components, which can be identified

the vector space R™. In particular, the Euclidean norm of R"’
induces a norm

(1.1) IX|g = /tr('XX) =

on M,,(R). On the other hand, we let

X
(1.2) X |y = sup{||vq|1|; v GR”\{O}},
where | - | denotes the Euclidean norm of R™.

Lemma 1.1. (1) The map X — |X|u is a norm of M, (R).
(2) For X, Y € M,(R), it holds that | XY |m < | X|Mm |Y]|M-

(3) Let A = A(X) be the mazimum eigenvalue of semi-positive
definite symmetric matriz "X X. Then |X|m = VA holds.

(4) (1/vn)IX[e = |X|u = [ Xe.

(5) The map |- |m: Mp(R) = R is continuous with respect to
the Fuclidean norm.
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Proof. Since | Xwv|/|v| is invariant under scalar multiplications
to v, we have | X |y = sup{|Xwv|; v € S" 1}, where S"~1! is the
unit sphere in R". Since S"~! 5 x — |Az| € R is a continuous
function defined on a compact space, it takes the maximum.
Thus, the right-hand side of (1.2) is well-defined. It is easy to
verify that | - |y satisfies the axiom of the norm.

Since A := "X X is positive semi-definite, the eigenvalues
Aj (4 =1,...,n) are non-negative real numbers. In particular,
there exists an orthonormal basis [a;] of R" satisfying Aa; =
Ajaj (7 =1,...,n). Let X be the maximum eigenvalues of A,

and write v = via1 + - - - +v,a,. Then it holds that
(Xv, Xv) = Mol + -4+ M02 <A (v,v),

where ( , ) is the Euclidean inner product of R™. The equality of
this inequality holds if and only if v is the A-eigenvector, proving
(3). Noticing the norm (1.1) is invariant under conjugations
X = '"PXP (P € O(n)), we obtain | X|g = /A2 +---+ A2 by
diagonalizing * X X by an orthogonal matrix P. Then we obtain
(4). Hence two norms |- |g and | - |y induce the same topology
as M, (R). In particular, we have (5). O

Preliminaries: Matrix-valued Functions.

Lemma 1.2. Let X and Y be C*°-maps defined on a domain
U C R™ into M,,(R). Then

0 0X oy
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(2) idetX =tr (X8>, and
an 8uj
0 0X
3) — X t=-Xx"1_—X"!
( ) 8uj an ’

where X is the cofactor matriz of X, and we assume in (3) that
X is a regular matriz.

Proposition 1.3. Assume two C*° matriz-valued functions X (t)
and £2(t) satisfy

(13) PO _xwaw.  x0)=x,
Then
(1.4) det X (t) = (det Xg) exp /t tr £2(7) dr

holds. In particular, if Xo € GL(n,R),! then X(t) € GL(n,R)
for all t.

Proof. By (2) of Lemma 1.2, we have

%det X(t) =tr ()?(t)d);ft)) = tr ()?(t)X(t)Q(t))

= tr(det X (£)£2(t)) = det X (¢) tr £2(¢).

IGL(n,R) = {A € M, (R); det A # 0}: the general linear group.
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Here, we used the relation XX = XX = (det X)id?. Hence

4 (p(t)~'det X(t)) = 0, where p(t) is the right-hand side of

(1.4). O

Proposition 1.4. Assume 2(t) in (1.3) is skew-symmetric for
all t, that is, ' + 2 is identically O. If Xo € O(n) (resp.
Xo € 50(n))3, X(t) € O(n) (resp. X(t) € SO(n)) for all t.

Proof. By (1) in Lemma 1.2,

d dx brdx
—(X'X)=—'X+X [ —
dt( ) at T ( dt )
= XX+ XX =X(2+'2)'X =0.
Hence X'X is constant, that is, if Xy € O(n),
X(t)'X(t) = X(t)" X (to) = Xo' X0 = id.

If Xy € O(n), this proves the first case of the proposition. Since
det A = £1 when A € O(n), the second case follows by conti-
nuity of det X (¢). O

Preliminaries: Norms of Matrix-Valued functions. Let
I = [a,b] be a closed interval, and denote by C°(I,M,,(R))
the set of continuous functions X: I — M, (R). For any fixed
number k, we define

(1.5) || X |1k == sup {eikt\X(t)|M; tel}

2In this lecture, id denotes the identity matrix.
30(n) = {A € Ma(R); tAA = A*A = id}: the orthogonal group;
SO(n) = {A € O(n); det A = 1}: the special orthogonal group.
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for X € C°(I,M,,(R)). When k = 0, ||-||1,0 is the uniform norm
for continuous functions, which is complete. Similarly, one can
prove the following in the same way:

Lemma 1.5. The norm || - |15 on C°(I,M,(R)) is complete.

Linear Ordinary Differential Equations. We prove the
fundamental theorem for linear ordinary differential equations.

Proposition 1.6. Let £2(t) be a C*®°-function valued in M, (R)
defined on an interval I. Then for each ty € I, there exists the
unique matriz-valued C™-function X (t) = Xy, 1a(t) such that

dX (1)
dt

(1.6) = X)),  X(t) =id.

Proof. Uniqueness: Assume X (t) and Y (¢) satisfy (1.6). Then

V() - X(t) = / (Y'(r) — X'(r)) dr

to

- /t (Y (r) = X (7)) $2(r) dr (l - jt)

to
holds. Hence for an arbitrary closed interval J C I,
t

‘ (Y(T) - X(T)) 2(7) |M dr

to

/t Y () = X(7)lyt [2(7) g dr

Y () = X&) =

=
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/ e Y (7) = X(7)]y €7 1207y, dr

to
t
/ e*mdr
to

sup, |2 i
K

SIY = X[k sup ||y
J

=Y = X||sx 1 — e klt=to)

ekt

S ||Y — X5k sup [2|m
J k|

holds for t € J. Thus, for an appropriate choice of k € R, it
holds that

1
Y = X|[|sx = §||Y*X||J,k’

that is, ||Y — X||sx = 0, proving Y (¢t) = X (¢) for t € J. Since
J is arbitrary, Y = X holds on I.
Existence: Let J := [tg,a] C I be a closed interval, and define a

sequence { X} of matrix-valued functions defined on I satisfying
Xo(t) = id and

(1.7) Xj+1(t):id+/t X;(MR(r)dr (j=0,1,2,...).

Let k := 2supy |£2|m. Then

t
|Xj1(t) = X()m = t | X (1) = Xj—1(7) M| 2(7) [mr dT
ek(t—to)

S ————sup|2ml|X; — X1l sk
k| s
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for an appropriate choice of k € R, and hence || X411 —Xj||sr =
211X — X;-1l|%, that is, {X;} is a Cauchy sequence with re-
spect to || - ||sk- Thus, by completeness (Lemma 1.5), it con-
verges to some X € C°(J, M, (R)). By (1.7), the limit X satisfies

X(to) =id,  X(t)=id+ /tt X (1)0(r) dr.

Applying the fundamental theorem of calculus, we can see that
X satisfies X'(t) = X(¢)02(t) (' = d/dt). Since J can be taken
arbitrarily, existence of the solution on I is proven.

Finally, we shall prove that X is of class C*°. Since X'(t) =
X (t)£2(t), the derivative X’ of X is continuous. Hence X is of
class C*!, and so is X (¢)£2(t). Thus we have that X’(t) is of class
C', and then X is of class C2. Iterating this argument, we can
prove that X (¢) is of class C" for arbitrary r. O

Corollary 1.7. Let 2(t) be a matriz-valued C™-function de-
fined on an interval I. Then for each ty € I and Xo € M, (R),
there exists the unique matriz-valued C*-function Xy, x,(t) de-
fined on I such that

dX (t)

(18) =

=X(1)Q(t), X(to) =Xo (X(t) =X x,(t))

In particular, X, x,(t) is of class C* in Xy and t.

Proof. We rewrite X (¢) in Proposition 1.6 as Y (t) = Xy, ia(?)-
Then the function

(19) X(t) = X()Y(t) = XOth,id(t)>

MTH.B406; Sect. 1 (20190625) 8

is desired one. Conversely, assume X (t) satisfies the conclusion.
Noticing Y (¢) is a regular matrix for all ¢ because of Proposi-
tion 1.3,

satisfies
daw  dX dy
— =Yy ' Xyl —y!
dt dt dt
=Xy '—Xxy'vyovy—'=o0.
Hence

W (t) = W (to) = X (to)Y (to) " = Xo.

Hence the uniqueness is obtained. The final part is obvious by
the expression (1.9). O

Proposition 1.8. Let 2(t) and B(t) be matriz-valued C*°-
functions defined on I. Then for each ty € I and Xy € M, (R),
there exists the unique matriz-valued C*°-function defined on I
satisfying

dX(t)
Cdt
Proof. Rewrite X in Proposition 1.6 as Y := X; jq. Then

(1.10) = X)) + B(t),  X(to) = Xo.

(1.11) X(t) = <X0+/tB(T)Y—1(T) dT) Y1)

to

satisfies (1.10). Conversely, if X satisfies (1.10), W := XY !
satisfies

X' =WY+WY'=WY+WYR, XQ2+B=WY2+ B,
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and then we have W’ = BY ~1. Since W () = X,

t
W =Xo+ | B(r)Y"(r)dr.

to
Thus we obtain (1.11). O

Theorem 1.9. Let I and U be an interval and a domain in R™,
respectively, and let 2(t, ) and B(t, &) be matriz-valued C'*°-
functions defined on I x U (¢ = (a1, ...,un)). Then for each
to €I, a €U and Xy € M, (R), there exists the unique matriz-
valued C™-function X (t) = Xy, x,.a(t) defined on I such that

(1.12) %t(t):X(t)Q(t,a)—kB(ua), X (to) = Xo.

Moreover,
IxIxM,(R)xU> (tto, Xo, ) = Xy x,.a(t) € M, (R)
is a C*°-map.

Proof. Let 2(t,&) := 2(t + to, ) and B(t, &) = B(t + to, o),
and let X (¢) := X (t + to). Then (1.12) is equivalent to

dX(t) =, ~ ~ -
(1.13) dt( ) _ X()2(t,&) + B(t,&), X(0) = Xo,
where & := (tg,a1,...,q,). There exists the unique solution

X(t) = Xid,XO,d(t) of (1.13) for each & because of Proposi-
tion 1.8. So it is sufficient to show differentiability with respect
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to the parameter &. We set Z = Z(t) the unique solution of
J o -
(1.14) T =Z0+X oo Z(0)=0.

Then it holds that Z = 8)?/80@- (Problem 1-1). In particular,
by the proof of Proposition 1.8, it holds that

0X - 0Q(r,a) 0B(r,a))\. _,
- (/ ( e (r)dr] v (1)
Here, Y (t) is the unique matrix-valued C*°-function satisfying

Y/(t) = Y (£)2(t, &), and Y (0) = id. Hence X is a C°°-function
in (t,&). O

Fundamental Theorem for Space Curves. As an appli-
cation, we prove the fundamental theorem for space curves. A
C>®-map 7: I — R? defined on an interval I C R into R? is
said to be a regular curve if 4 # 0 holds on I. For a regular
curve 7(t), there exists a parameter change t = t(s) such that
(s) := ~(t(s)) satisfies |/ (s)| = 1. Such a parameter s is called
the arc-length parameter.

Let v(s) be a regular curve in R3 parametrized by the arc-
length satisfying 7" (s) # 0 for all s. Then

_ ")
()’

forms a positively oriented orthonormal basis {e, n, b} of R3 for
each s. Regarding each vector as column vector, we have the

e(s) :=+'(s), n(s) :

b(s) :=e(s) x n(s)
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matrix-valued function
(1.15) F(s) := (e(s),n(s),b(s)) € SO(3).

in s, which is called the Frenet frame associated to the curve 7.
Under the situation above, we set

K(s) = 17"(s)| >0, 7(s) = —(b'(s),n(s)),

which are called the curvature and torsion, respectively, of ~.
Using these quantities, the Frenet frame satisfies

0 —k O

(1.16) gz}'ﬁ, N=|x 0 -7
ds

0 7 0

Proposition 1.10. The curvature and the torsion are invariant
under the transformation = — Az + b of R3 (A € SO(3), b €
R3). Conversely, two curves 71(s), v2(s) parametrized by arc-
length parameter have common curvature and torsion, there
exist A € SO(3) and b € R? such that v = Ay, +b.

Proof. Let k, 7 and F7 be the curvature, torsion and the Frenet
frame of 1, respectively. Then the Frenet frame of 7o = Ay, +b
(A € SO(3), b € R3) is Fo = AF;. Hence both F; and F; satisfy
(1.16), and then 77 and 72 have common curvature and torsion.

Conversely, assume 7; and 72 have common curvature and
torsion. Then the frenet frame F;, F3 both satisfy (1.16). Let
F be the unique solution of (1.16) with F(tg) = id. Then by
the proof of Corollary 1.7, we have F;(t) = F;(to)F(t) (j =
1,2). In particular, since F; € SO(3), Fa(t) = AFi(t) (A =

MTH.B406; Sect. 1 (20190625) 12

Fa(to)Fi(to)~t € SO(3)). Comparing the first column of these,
v5(s) = Avi(t) holds. Integrating this, the conclusion follows.
O

Theorem 1.11 (The fundamental theorem for space curves).
For given C*-functions k(s) and 7(s) defined on I such that
k(s) > 0 on I. Then there exists a space curve y(s) parametrized
by arc-length whose curvature and torsion are k and T, respec-
tively. Moreover, such a curve is unique up to transformation
z+— Az +b (A €SO(3), b e R?) of R3.

Proof. We have already shown the uniqueness in Proposition 1.10.
We shall prove the existence: Let 2(s) be as in (1.16), and
F(s) the solution of (1.16) with F(sp) = id. Since {2 is skew-
symmetric, F(s) € SO(3) by Proposition 1.4. Denoting the
column vectors of F by e, n, b, and let

)= [ :e<a> o,

Then F is the Frenet frame of 7, and &, and 7 are the curvature
and torsion of v, respectively (Problem 1-2). O

FEzxercises

1-1 Verify that Z in (1.14) coincides with X /da;.
1-2 Complete the proof of Theorem 1.11.

1-3 Find an explicit expression of a space curve y(s) parametrized
the arc-length s, whose curvature and torsion are a/(1+52)
and b/(1 + s?), respectively, where a and b are constants.



