1 Linear Ordinary Differential Equations
Preliminaries: Matrix Norms. Denote by M, (R) the set
of n X m matrix with real components, which can be identified

the vector space R™. In particular, the Euclidean norm of R"’
induces a norm

(1.1) IX|g = /tr('XX) =

on M,,(R). On the other hand, we let

X
(1.2) X |y = sup{||vq|1|; v GR”\{O}},
where | - | denotes the Euclidean norm of R™.

Lemma 1.1. (1) The map X — |X|u is a norm of M, (R).
(2) For X, Y € M,(R), it holds that | XY |m < | X|Mm |Y]|M-

(3) Let A = A(X) be the mazimum eigenvalue of semi-positive
definite symmetric matriz "X X. Then |X|m = VA holds.

(4) (1/vn)IX[e = |X|u = [ Xe.

(5) The map |- |m: Mp(R) = R is continuous with respect to
the Fuclidean norm.

18. June, 2019. Revised: 25. June, 2019

MTH.B406; Sect. 1 (20190723) 2

Proof. Since | Xwv|/|v| is invariant under scalar multiplications
to v, we have | X |y = sup{|Xwv|; v € S" 1}, where S"~1! is the
unit sphere in R". Since S"~! 5 x — |Az| € R is a continuous
function defined on a compact space, it takes the maximum.
Thus, the right-hand side of (1.2) is well-defined. It is easy to
verify that | - |y satisfies the axiom of the norm.

Since A := "X X is positive semi-definite, the eigenvalues
Aj (4 =1,...,n) are non-negative real numbers. In particular,
there exists an orthonormal basis [a;] of R" satisfying Aa; =
Ajaj (7 =1,...,n). Let X be the maximum eigenvalues of A,

and write v = via1 + - - - +v,a,. Then it holds that
(Xv, Xv) = Mol + -4+ M02 <A (v,v),

where ( , ) is the Euclidean inner product of R™. The equality of
this inequality holds if and only if v is the A-eigenvector, proving
(3). Noticing the norm (1.1) is invariant under conjugations
X = '"PXP (P € O(n)), we obtain | X|g = /A2 +---+ A2 by
diagonalizing * X X by an orthogonal matrix P. Then we obtain
(4). Hence two norms |- |g and | - |y induce the same topology
as M, (R). In particular, we have (5). O

Preliminaries: Matrix-valued Functions.

Lemma 1.2. Let X and Y be C*°-maps defined on a domain
U C R™ into M,,(R). Then

0 0X oy
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(2) idetX =tr (X8>, and
an 8uj
0 0X
3) — X t=-Xx"1_—X"!
( ) 8uj an ’

where X is the cofactor matriz of X, and we assume in (3) that
X is a regular matriz.

Proposition 1.3. Assume two C*° matriz-valued functions X (t)
and £2(t) satisfy

(13) PO _xwaw.  x0)=x,
Then
(1.4) det X (t) = (det Xg) exp /t tr £2(7) dr

holds. In particular, if Xo € GL(n,R),! then X(t) € GL(n,R)
for all t.

Proof. By (2) of Lemma 1.2, we have

%det X(t) =tr ()?(t)d);ft)) = tr ()?(t)X(t)Q(t))

= tr(det X (£)£2(t)) = det X (¢) tr £2(¢).

IGL(n,R) = {A € M, (R); det A # 0}: the general linear group.
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Here, we used the relation XX = XX = (det X)id?. Hence

4 (p(t)~'det X(t)) = 0, where p(t) is the right-hand side of

(1.4). O

Proposition 1.4. Assume 2(t) in (1.3) is skew-symmetric for
all t, that is, ' + 2 is identically O. If Xo € O(n) (resp.
Xo € 50(n))3, X(t) € O(n) (resp. X(t) € SO(n)) for all t.

Proof. By (1) in Lemma 1.2,

d dx brdx
—(X'X)=—'X+X [ —
dt( ) at T ( dt )
= XX+ XX =X(2+'2)'X =0.
Hence X'X is constant, that is, if Xy € O(n),
X(t)'X(t) = X(t)" X (to) = Xo' X0 = id.

If Xy € O(n), this proves the first case of the proposition. Since
det A = £1 when A € O(n), the second case follows by conti-
nuity of det X (¢). O

Preliminaries: Norms of Matrix-Valued functions. Let
I = [a,b] be a closed interval, and denote by C°(I,M,,(R))
the set of continuous functions X: I — M, (R). For any fixed
number k, we define

(1.5) || X |1k == sup {eikt\X(t)|M; tel}

2In this lecture, id denotes the identity matrix.
30(n) = {A € Ma(R); tAA = A*A = id}: the orthogonal group;
SO(n) = {A € O(n); det A = 1}: the special orthogonal group.
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for X € C°(I,M,,(R)). When k = 0, ||-||1,0 is the uniform norm
for continuous functions, which is complete. Similarly, one can
prove the following in the same way:

Lemma 1.5. The norm || - |15 on C°(I,M,(R)) is complete.

Linear Ordinary Differential Equations. We prove the
fundamental theorem for linear ordinary differential equations.

Proposition 1.6. Let £2(t) be a C*®°-function valued in M, (R)
defined on an interval I. Then for each ty € I, there exists the
unique matriz-valued C™-function X (t) = Xy, 1a(t) such that

dX (1)
dt

(1.6) = X)),  X(t) =id.

Proof. Uniqueness: Assume X (t) and Y (¢) satisfy (1.6). Then

V() - X(t) = / (Y'(r) — X'(r)) dr

to

- /t (Y (r) = X (7)) $2(r) dr (l - jt)

to
holds. Hence for an arbitrary closed interval J C I,
t

‘ (Y(T) - X(T)) 2(7) |M dr

to

/t Y () = X(7)lyt [2(7) g dr

Y () = X&) =

=
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/ e Y (7) = X(7)]y €7 1207y, dr

to
t
/ e*mdr
to

sup, |2 i
K

SIY = X[k sup ||y
J

=Y = X||sx 1 — e klt=to)

ekt

S ||Y — X5k sup [2|m
J k|

holds for t € J. Thus, for an appropriate choice of k € R, it
holds that

1
Y = X|[|sx = §||Y*X||J,k’

that is, ||Y — X||sx = 0, proving Y (¢t) = X (¢) for t € J. Since
J is arbitrary, Y = X holds on I.
Existence: Let J := [tg,a] C I be a closed interval, and define a

sequence { X} of matrix-valued functions defined on I satisfying
Xo(t) = id and

(1.7) Xj+1(t):id+/t X;(MR(r)dr (j=0,1,2,...).

Let k := 2supy |£2|m. Then

t
|Xj1(t) = X()m = t | X (1) = Xj—1(7) M| 2(7) [mr dT
ek(t—to)

S ————sup|2ml|X; — X1l sk
k| s
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for an appropriate choice of k € R, and hence || X411 —Xj||sr =
211X — X;-1l|%, that is, {X;} is a Cauchy sequence with re-
spect to || - ||sk- Thus, by completeness (Lemma 1.5), it con-
verges to some X € C°(J, M, (R)). By (1.7), the limit X satisfies

X(to) =id,  X(t)=id+ /tt X (1)0(r) dr.

Applying the fundamental theorem of calculus, we can see that
X satisfies X'(t) = X(¢)02(t) (' = d/dt). Since J can be taken
arbitrarily, existence of the solution on I is proven.

Finally, we shall prove that X is of class C*°. Since X'(t) =
X (t)£2(t), the derivative X’ of X is continuous. Hence X is of
class C*!, and so is X (¢)£2(t). Thus we have that X’(t) is of class
C', and then X is of class C2. Iterating this argument, we can
prove that X (¢) is of class C" for arbitrary r. O

Corollary 1.7. Let 2(t) be a matriz-valued C™-function de-
fined on an interval I. Then for each ty € I and Xo € M, (R),
there exists the unique matriz-valued C*-function Xy, x,(t) de-
fined on I such that

dX (t)

(18) =

=X(1)Q(t), X(to) =Xo (X(t) =X x,(t))

In particular, X, x,(t) is of class C* in Xy and t.

Proof. We rewrite X (¢) in Proposition 1.6 as Y (t) = Xy, ia(?)-
Then the function

(19) X(t) = X()Y(t) = XOth,id(t)>
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is desired one. Conversely, assume X (t) satisfies the conclusion.
Noticing Y (¢) is a regular matrix for all ¢ because of Proposi-
tion 1.3,

satisfies
daw  dX dy
— =Yy ' Xyl —y!
dt dt dt
=Xy '—Xxy'vyovy—'=o0.
Hence

W (t) = W (to) = X (to)Y (to) " = Xo.

Hence the uniqueness is obtained. The final part is obvious by
the expression (1.9). O

Proposition 1.8. Let 2(t) and B(t) be matriz-valued C*°-
functions defined on I. Then for each ty € I and Xy € M, (R),
there exists the unique matriz-valued C*°-function defined on I
satisfying

dX(t)
Cdt
Proof. Rewrite X in Proposition 1.6 as Y := X; jq. Then

(1.10) = X)) + B(t),  X(to) = Xo.

(1.11) X(t) = <X0+/tB(T)Y—1(T) dT) Y1)

to

satisfies (1.10). Conversely, if X satisfies (1.10), W := XY !
satisfies

X' =WY+WY'=WY+WYR, XQ2+B=WY2+ B,
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and then we have W’ = BY ~1. Since W () = X,

t
W =Xo+ | B(r)Y"(r)dr.

to
Thus we obtain (1.11). O

Theorem 1.9. Let I and U be an interval and a domain in R™,
respectively, and let 2(t, ) and B(t, &) be matriz-valued C'*°-
functions defined on I x U (¢ = (a1, ...,un)). Then for each
to €I, a €U and Xy € M, (R), there exists the unique matriz-
valued C™-function X (t) = Xy, x,.a(t) defined on I such that

(1.12) %t(t):X(t)Q(t,a)—kB(ua), X (to) = Xo.

Moreover,
IxIxM,(R)xU> (tto, Xo, ) = Xy x,.a(t) € M, (R)
is a C*°-map.

Proof. Let 2(t,&) := 2(t + to, ) and B(t, &) = B(t + to, o),
and let X (¢) := X (t + to). Then (1.12) is equivalent to

dX(t) =, ~ ~ -
(1.13) dt( ) _ X()2(t,&) + B(t,&), X(0) = Xo,
where & := (tg,a1,...,q,). There exists the unique solution

X(t) = Xid,XO,d(t) of (1.13) for each & because of Proposi-
tion 1.8. So it is sufficient to show differentiability with respect
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to the parameter &. We set Z = Z(t) the unique solution of
J o -
(1.14) T =Z0+X oo Z(0)=0.

Then it holds that Z = 8)?/80@- (Problem 1-1). In particular,
by the proof of Proposition 1.8, it holds that

0X - 0Q(r,a) 0B(r,a))\. _,
- (/ ( e (r)dr] v (1)
Here, Y (t) is the unique matrix-valued C*°-function satisfying

Y/(t) = Y (£)2(t, &), and Y (0) = id. Hence X is a C°°-function
in (t,&). O

Fundamental Theorem for Space Curves. As an appli-
cation, we prove the fundamental theorem for space curves. A
C>®-map 7: I — R? defined on an interval I C R into R? is
said to be a regular curve if 4 # 0 holds on I. For a regular
curve 7(t), there exists a parameter change t = t(s) such that
(s) := ~(t(s)) satisfies |/ (s)| = 1. Such a parameter s is called
the arc-length parameter.

Let v(s) be a regular curve in R3 parametrized by the arc-
length satisfying 7" (s) # 0 for all s. Then

_ ")
()’

forms a positively oriented orthonormal basis {e, n, b} of R3 for
each s. Regarding each vector as column vector, we have the

e(s) :=+'(s), n(s) :

b(s) :=e(s) x n(s)
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matrix-valued function
(1.15) F(s) := (e(s),n(s),b(s)) € SO(3).

in s, which is called the Frenet frame associated to the curve 7.
Under the situation above, we set

K(s) = 17"(s)| >0, 7(s) = —(b'(s),n(s)),

which are called the curvature and torsion, respectively, of ~.
Using these quantities, the Frenet frame satisfies

0 —k O

(1.16) gz}'ﬁ, N=|x 0 -7
ds

0 7 0

Proposition 1.10. The curvature and the torsion are invariant
under the transformation = — Az + b of R3 (A € SO(3), b €
R3). Conversely, two curves 71(s), v2(s) parametrized by arc-
length parameter have common curvature and torsion, there
exist A € SO(3) and b € R? such that v = Ay, +b.

Proof. Let k, 7 and F7 be the curvature, torsion and the Frenet
frame of 1, respectively. Then the Frenet frame of 7o = Ay, +b
(A € SO(3), b € R3) is Fo = AF;. Hence both F; and F; satisfy
(1.16), and then 77 and 72 have common curvature and torsion.

Conversely, assume 7; and 72 have common curvature and
torsion. Then the frenet frame F;, F3 both satisfy (1.16). Let
F be the unique solution of (1.16) with F(tg) = id. Then by
the proof of Corollary 1.7, we have F;(t) = F;(to)F(t) (j =
1,2). In particular, since F; € SO(3), Fa(t) = AFi(t) (A =
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Fa(to)Fi(to)~t € SO(3)). Comparing the first column of these,
v5(s) = Avi(t) holds. Integrating this, the conclusion follows.
O

Theorem 1.11 (The fundamental theorem for space curves).
For given C*-functions k(s) and 7(s) defined on I such that
k(s) > 0 on I. Then there exists a space curve y(s) parametrized
by arc-length whose curvature and torsion are k and T, respec-
tively. Moreover, such a curve is unique up to transformation
z+— Az +b (A €SO(3), b e R?) of R3.

Proof. We have already shown the uniqueness in Proposition 1.10.
We shall prove the existence: Let 2(s) be as in (1.16), and
F(s) the solution of (1.16) with F(sp) = id. Since {2 is skew-
symmetric, F(s) € SO(3) by Proposition 1.4. Denoting the
column vectors of F by e, n, b, and let

)= [ :e<a> o,

Then F is the Frenet frame of 7, and &, and 7 are the curvature
and torsion of v, respectively (Problem 1-2). O

FEzxercises

1-1 Verify that Z in (1.14) coincides with X /da;.
1-2 Complete the proof of Theorem 1.11.

1-3 Find an explicit expression of a space curve y(s) parametrized
the arc-length s, whose curvature and torsion are a/(1+52)
and b/(1 + s?), respectively, where a and b are constants.
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2 Integrability Conditions

Let U C R™ be a domain of (R™;u!,...,u™) and consider m-
tuple of n x n-matrix valued C'*°-maps

21)  2;:R™">SU —M(R) (j=1,...,m).

In this section, we consider an initial value problem of a system
of linear partial differential equations

0X .
(22) % :X.QJ (] = 1,,m), X(Po) :Xo,
where Py = (ug,...,u") € U is a fixed point, X is an n x n-

matrix valued unknown, and X € M,,(R). The chain rule yields
the following:

Lemma 2.1. Let X: U — M,(R) be a C®-map satisfying
(2.2). Then for each smooth path ~v: I — U defined on an in-
terval I C R, X := X oy : I — M, (R) satisfies the ordinary
differential equation

23) “0)= X020 |00 = g 2 05(1) (1)
on I, where v(t) = (u*(t),...,u™(t)).

Proposition 2.2. If a« C®-map X: U — M,(R) defined on
a domain U C R™ satisfies (2.2) with Xo € GL(n,R), then

25. June, 2019. (Revised: 02. July, 2018)
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X(P) € GL(n,R) for all P € U. In addition, if £2; (j =
1,...,m) are skew-symmetric and Xy € SO(n), then X(P) €
SO(n) holds for all P € U.

Proof. Since U is connected, there exists a continuous path
Y: [0,1] — U such that v¢(0) = Py and ~o(1) = P. By Whit-
ney’s approximation theorem (cf. Theorem 10.16 in [2-3]), there
exists a smooth path ~: [0,1] — U joining Py and P approxi-
mating 7o. Since X := X o v satisfies (2.3) with X(0) = Xo,
Proposition 1.3 yields that det X (1) # 0 whenever det X, # 0.
The latter half follows from Proposition 1.4. O

Proposition 2.3. If a matriz-valued C*° function X: U —
GL(n,R) satisfies (2.2), it holds that
082; 08X
for each (3,k) with1 < j <k < m.
Proof. Differentiating (2.2) by u*, we have

#X X 09 Ble
dkow — ok T X g =X (au * Qk‘%‘) -

On the other hand, switching the roles of j and k, we get

oud

Since X is of class C'°, the left-hand sides of these equalities
coincide, and so are the right-hand sides. Since X € GL(n,R),
the conclusion follows. O

0?X o
DI ( * ”J‘Qk) -
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The equality (2.4) is called the integrability condition or com-
patibility condition of (2.2).

Lemma 2.4. Let 2;: U — M, (R) (j =1,...,m) be C*>®-maps

defined on a domain U C R™ which satisfy (2.4). Then for each
smooth map

o: D> (t,w) — o(t,w) = (u'(t,w),...,u™(t,w)) €U

defined on a domain D C R?, it holds that

or ow
2. — — —— =T T =
(2.5) 5w~ TWHWT =0,
where
" o 0w~
Jj=1 j=1

Proof. By the chain rule, we have

or U 042; ouk du? zm: ~ 9%

ow 4= QuF dw Ot Towdt’

7,k=1 j=1
OW & 002 0uF o N 5 0P
o 2 out o ow 2= Do

B 00, Oud ouF T 9%
=2 5w o ow = Yoww

JR=
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Hence
or oW _ n (00, 0.y outow
ow ot 7jk:1 ouk  Ouwl ) Ow Ot
i ouPr oI
= > (- i) 5057
J,k=1
(& ow ’"~auk m ot (O ou
= (ZQJ 8t) > ”kaw> - <ZQ’“6w> (anat)
j=1 71 k=1 j=1

Integrability of linear systems. In this section, we shall
prove the following

Theorem 2.5. Let 2;: U — M,(R) (j = 1,...,m) be C>°-
functions defined on a simply connected domain U C R™ sat-
isfying (2.4). Then for each Py € U and Xo € M, (R), there
exists the unique n X n-matriz valued function X : U — M, (R)
satisfying (2.2). Moreover,

e if Xy € GL(n,R), X(P) € GL(n,R) holds on U,

o if Xo € SO(n) and 2; (j =1,...,m) are skew-symmetric
matrices, X € SO(n) holds on U.

Proof. The latter half is a direct conclusion of Proposition 2.2.
We show the existence of X: Take a smooth path «: [0,1] = U
joining Py and P. Then by Theorem 1.9, there exists a unique
C>°-map X : [0,1] — M, (R) satisfying (2.3) with initial condi-
tion X (0) = Xo.
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We shall show that the value X (1) does not depend on choice
of paths joining Py and P. To show this, choose another smooth
path ¥ joining Py and P. Since U is simply connected, there
exists a homotopy between v and ¥, that is, there exists a con-
tinuous map oq: [0,1] x [0,1] 3 (t,w) — o(t,w) € U satisfying

(®),

0'0<t70) :'V(t)7 0(

v
27 oo(0,w) =Po,  aol, > P.

Then, by Whitney’s approximation theorem (Theorem 10.16 in
[2-3]) again, there exists a smooth map o: [0,1] x [0,1] — U
satisfying the same boundary conditions as (2.7). We set T" and
W as in (2.6). For each fixed w € [0, 1], there exists X,,: [0,1] —
M,,(R) such that

dX

7 (t) = Xo(®)T(t,w), Xw(0) = Xp.

Since T'(t,w) is smooth in ¢ and w, the map
X:00,1] x [0,1] 3 (t,w) = Xo(t) € M, (R)

is a smooth map. To show that X (1) = X(1,0) does not depend
on choice of paths, it is sufficient to show that

oxX
2. =X
(28) ow W
holds on [0,1] x [0,1]. In fact, by (2.7), W(1l,w) = 0 for all

w € [0,1], and then (2.8) implies that X (1,w) is constant.
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We prove (2.8): By definition, it holds that

(2.9) 68—); =XT, X(0,w)=Xp

for each w € [0,1]. Hence by (2.5),

D S S

ot dw  otdw  owdt  ow
gXT XgT ZXT X<86W +TW — WT)
%T + X%/ + %W XWT
c’?t (XW) + (zf - XW)

So, the function Y, (t) := X /0w — XW satisfies the ordinary
differential equation

dYy,
dt

holds for each w € [0,1]. Thus, by the uniqueness of the solu-
tion, Y, (t) = O holds on [0, 1] x [0, 1]. Hence we have (2.8).

Thus, X(l) depends only the end point P of the path. Hence
we can set X(P) := X(1) for each P € U, and obtain a map
X: U — M,,(R). Finally we show that X is the desired solution.
The initial condition X (Py) = Xy is obviously satisfied. On the
other hand, if we set

Z(8) = X(u'y. . w46, u™) — X (ut L u™),

t) =Y, ()T (t,w), Y,(0)=0
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Z(6) satisfies the equation (2.3) for the path v(8) := (ul,... , u/+
d,...,u™) with Z(0) = X(P). Since £2, = 2},

oX dz
—=—=70;=X,;
ouwl  dé J 7
which completes the proof. O

Application: Poincaré’s lemma.

Theorem 2.6 (Poincaré’s lemma). If a differential 1-form
w = Zaj(ul,...,um) du?

defined on a simply connected domain U C R™ is closed, that is,
dw = 0 holds, then there exists a C*°-function f on U such that
df = w. Such a function f is unique up to additive constants.

Proof. The assumption is equivalent to

Oa; Oy
2.1 - == 1<i<y
( 0) aul 8uj 0 ( =t<J

A

m).

Consider a system of linear partial differential equations with
unknown ¢, a 1 X I-matrix valued function (i.e. a real-valued
function), as

23

(2.11) @zgaj G=1,....,m),  Eup,...,ud") = 1.

Then it satisfies (2.4) because of (2.10). Hence by Theorem 2.5,
there exists a smooth function &(ul, ..., u™) satisfying (2.11).
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In particular, Proposition 1.3 yields & = det & never vanishes.
Here, £(ug,...,ud") = 1 > 0 means that & > 0 holds on U.
Letting f := log&, we have the function f satisfying df = w.
Next, we show the uniqueness: if two functions f and g
satisfy df = dg = w, it holds that d(f — ¢g) = 0. Hence by
connectivity of U, f — ¢g must be constant. O

Application: Conjugation of Harmonic functions. In
this paragraph, we identify R? with the complex plane C. It
is well-known that a function

(2.12) f:Usu+iv+— &(u,v) +in(u,v) € C i=+-1)

defined on a domain U C C is holomorphic if and only if it sat-
isfies the following relation, called the Cauchy-Riemann equa-
tions:

9§ _ 0On 23 In
2.1 === ==
(2.13) ou v’ v ou
Definition 2.7. A function f: U — R defined on a domain
U C R? is said to be harmonic if it satisfies

Af = fuu +f'uv =0.
The operator A is called the Laplacian.

Proposition 2.8. If function f in (2.12) is holomorphic, &(u,v)
and n(u,v) are harmonic functions.

Proof. By (2.13), we have
guu = (gu)u = (nv)u = Nvu = Nuv = (nu)v = (_gv)v = —Quv-



21 (20190723) MTH.B406; Sect. 2

Hence A& = 0. Similarly,

Nuu = (7£v)u = 7£vu = 7§uv = *(gu)v = *(nv)v = —Nov-
Thus Anp = 0. O

Theorem 2.9. Let U C C =R? be a simply connected domain
and &(u,v) a C°°-function harmonic on U*. Then there exists
a C* harmonic function n on U such that {(u,v) +in(u,v) is
holomorphic on U.

Proof. Let a:= —&, du + &, dv. Then by the assumption,
da = (€pp + Euu) duNdv =0

holds, that is, « is a closed 1-form. Hence by simple connectivity
of U and the Poincaré’s lemma (Theorem 2.6), there exists a
function n such that dn = n, du + 1, dv = «. Such a function
7 satisfies (2.13) for given . Hence £ + in is holomorphic in
u+1iv. O

Definition 2.10. The harmonic function 7 in Theorem 2.9 is
called the conjugate harmonic function of &.

The fundamental theorem for Surfaces. Let p: U — R3?
be a parametrization of a regular surface defined on a domain
U C R% That is, p = p(u,v) is a C*°-map such that p, and
p, are linearly independent at each point on U. Then v :=
(Pu X pu)/|Pu X po| is the unit normal vector field to the surface.

4The theorem holds under the assumption of C2-differentiablity.
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The matrix-valued function F := (py,py,v): U — M3(R) is
called the Gauss frame of p. We set

ds?® := Edu® + 2F dudv + G dv?,

(2.14) ) 9
II .= Ldu® +2M dudv + N dv=,

where
E:pu'pu F:pu'pv G:pv'pv
L:puu‘y M:puv'V N:pvv'l/~

We call ds? (vesp. II) the first (resp. second) fundamental form.
Note that linear independence of p, and p, implies

(2.15) E>0, G>0 and EG-F?>0.
Set
p . GBu—2FFy +FE, ., _ 2BEF, — EE, ~FE,
e 2(EG-F?) = 1 2AEG—F2)
GE, — FGy EGy — FE,
(2.16) Ny =TIy = 2(BG — F2)’ Iy =13 = 2AEG — F2)
| . 2GF, ~ GGy —FGy ., _ EGy—2FF, + FGy
22 20EG-F?) = 27T 2(EG — F?)
and
_(AY AN (E F\ (L M
(2.17) A= (A% 2)=F ¢ v N

The functions Fi’;» and the matrix A are called the Christoffel
symbols and the Weingarten matriz. We state the following the
fundamental theorem for surfaces, and give a proof (for a special

case) in the following section.
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Theorem 2.11 (The Fundamental Theorem for Surfaces). Let
p: U 3 (u,v) = p(u,v) € R3 be a parametrization of a regular
surface defined on a domain U C R%. Then the Gauss frame
F :={pu,pv, v} satisfies the equations

oF oF
(2.18) ey = F12, Ee = FA,
F111 F112 *A% F211 F212 *A%
2:= F121 F122 _A% , A= F221 F222 _A% )
L M 0 M N 0

where ij (4,5, k = 1,2), AF (k,1=1,2) and L, M, N are the
Christoffel symbols, the entries of the Weingarten matriz and
the entries of the second fundamental form, respectively.

Theorem 2.12. Let U C R? be a simply connected domain, E,
F, G, L, M, N C*-functions satisfying (2.15), and Fi’;-, Al the
functions defined by (2.16) and (2.17), respectively. If 2 and A

satisfies
(2.19) 2, — Ny = 02A— N,

there exists a parameterization p: U — R3 of regular surface
whose fundamental forms are given by (2.14). Moreover, such a
surface is unique up to orientation preserving isometries of R3.
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Ezxercises

2-1 Let &(u,v) = log vu? + v? be a function defined on U =
R?\ {(0,0)}

(1) Show that £ is harmonic on U.

(2) Find the conjugate harmonic function 7 of £ on
V =R*\ {(,0)|u<0}CU.

(3) Show that there exists no conjugate harmonic func-
tion of ¢ defined on U.

2-2 Let 0 = 6(u,v) be a smooth function on a domain U C R?
such that 0 < 6§ < 7, and

ds? := du® +2cosOdudv + dv?, II :=2sinfdudv.
Show that the condition (2.19) is equivalent to

0y = sinb.
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3 Flatness.

Riemannian manifolds. A Riemannian manifold (resp. pseudo

Riemannian manifold) is a pair (M, g) of a C°*°-manifold M and
a Riemannian metric (resp. pseudo Riemannian metric) on M,
that is, g is a collection {gp ; P € M} of positive definite (resp.
non-degenerate) inner products on Tp M such that, for each pair
of C*>-vector fields (X,Y) on M, the map

M>P I—)gp(Xp,Yp) eR

is a C°°-function, where Xp and Yp are values of X and Y at
P, respectively.

Example 3.1 ((Pseudo) Euclidean spaces.). Let R? be a pseudo
Euclidean vector space with inner product (, ) of signature
(n — s,s). Identifying the tangent space TpR? of R? itself by
translations, ( , ) gives a pseudo Riemannian metric of the man-
ifold R?. Such a pseudo Riemannian manifold is called the
pseudo Euclidean space of signature (n — s,s). In particular,
R" := R{, which is a Riemannian manifold, is called the Eu-
clidean space.

Example 3.2. Let M be a submanifold of the Euclidean space
R™, that is, M is a subset of R™ and has a structure of C°°-
manifold such that the inclusion map ¢: M — R™ is an immer-
sion. Then TpM is considered as a linear subspace of R"(=
TpR"™), and then the restriction of the inner product (, ) of R™
gives a Riemannian metric on M. Such a Riemannian metric is
called the induced metric.

02. July, 2019. Revised: 09. July, 2019
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Example 3.3 (Spheres). For positive real number k, a subset
S*(k) == {x € R"!; (x,x) = 1/k} is an n-dimensional C°-
submanifold (hypersurface)® of the Euclidean space R™*!, called
the n-dimensional sphere of curvature® k.

Example 3.4. A linear subspace L of RY is said to be non-
degenerate if the restriction of the inner product {, ) of R?
to L is non-degenerate. A submanifold M C R is said to be
non-degenerate if Tp M is a non-degenerate subspace of R} for
each P € M. In this case, the restriction of (, ) on TpM is a
(non-degenerate) inner product of Tp M.

Example 3.5 (Hyperbolic spaces.). For positive real number
k, a subset

H"(—k) :={z e R} ; (x,x) = —1/k,2° > 0}

is a connected C'*°-hypersurface of the Lorentz-Minkowski space
R} where (, ) is the inner product of signature (—, +, ..., +),
and z = t(xo,xl,...,x"). The tangent space TpH"(—k) =
{v € R (v,2) = 0} = x* is non-degenerate subspace in
R} and the restriction of (, ) to TuH"(—Fk) is positive defi-
nite. Thus, we obtain a Riemannian manifold H"(—k), which
is called the hyperbolic space of curvature —k.

Geodesics. Let M C R?"! be a non-degenerate submanifold
of dimension m. By non-degeneracy, the orthogonal decompo-

5An n-dimensional submanifold of (n + 1)-dimensional manifold (i.e., a
submanifold of codimension one) is called a hypersurface.
6The word curvature is undefined at the moment.
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sition
(3.1) R = TpRI = Tp M & Np, (Np = (Tp M)*)

holds for each P € M. Take a curve v on M, that is, v is a
C°°-map
v:J 3t y(t) € M C R

where J C R is an interval. From now on, by a word smooth,
we mean “of class C*°”.

Definition 3.6. Let v: J — M C R?"! be a smooth curve on
M. A smooth vector field on M along vy is a map

X:J3tr— X(t) € TyyM C RI!
which is of class C* as a map from J to R?*1.

Example 3.7. Let v: J — M C R?*! be a smooth curve.
Then

. . dry

A JJt— () = E@) € TyiyM
is a smooth vector field along ~, called the velocity vector field
of the curve 7.

Definition 3.8. Let X be a smooth vector field along a smooth
curve v on M. Then the vector field

v . AT

X (1) 1= Vi X (1) = [X(0)] € Ty M
of M along ~ is called the covariant derivative of X along -,
where [¥]" denotes the tangential component as in (3.1).
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Definition 3.9. The covariant derivative

V. . T
(3.2) 27 = Vs07@t) =[] € TyyM
of 4 along 7 is called the acceleration of the curve 7.

Definition 3.10. A curve v on a non-degenerate submanifold
M C R s called a geodesic if V57 vanishes identically.

Local and intrinsic expressions. Let M C R""! be a non-
degenerate submanifold and take a local coordinate neighbor-
hood (U;ut,...,u™) of M, where m = dim M. Then the inclu-
sion map ¢: M — R?"! induces an immersion

(33) f:U3,...,u™) — fu,...,u™) e M Cc R?T,

here we identify the coordinate neighborhood U C M with a
region of R™. We call such an f a (local) parametrization of M.
Under this parametrization, the canonical basis {(9/0u’)p} of
TpM (in the abstract way) is identified with

{ of (P) of (P)} Cc TpM C R

oul™ 7 Qum

We set, for i,j =1,...,m,

0 0 af of
(3.4) gij =4 (8ui’ 8uﬂ> = <8ui’8uﬂ'> (: gji)

which is a component of the induced metric g := ( , ) |70 with
respect to the canonical basis {9/0u’ }. Since the induced metric
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is non-degenerate, the m x m-matrix (g;;) is a regular matrix
at each point P € M. In particular, when the induced metric
is positive definite, (g;;) is positive definite. We denote by (g*/)
the inverse matrix of (g;;):

S (i =)
(35) 2 g = = {0 (i # )
Then, as we have seen in Section 5 of “Advanced Topics in
Geometry A1, 2019”7 (the previous quarter), we have
Lemma 3.11. Let 7y is a curve in U C M and express
Y(t) = f(u' (@), ..., u™ (1)),

where f: U — M is a local parametrization of M as in (3.3).

" du?
0 =3 e or
. WL - j du® dut \ Of
(3.7) V4= ; —z + kZl::l el e
hold, where
1 . . .
(3.8) rh=3 ;gkl (gfj} + ggzjj - 8895) .

The functions Fi’} of (3.8) are called the Christoffel symbols

with respect to the local coordinate system (ul,... ,u™).
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Christoffel symbols. By definition (3.8), the Christoffel sym-
bols I ik'» are functions defined on the coordinate neighborhood
U which are determined only by the coefficients (g;;) of the
(pseudo) Riemannian metric. That is, the definition of Filj- does

not require the knowledge of ~.

Proposition 3.12. Let M C R?*! be a non-degenerate sub-
manifold with induced metric { , ), and take a local coordinate
system (Usut,...,u™) of M. We write parametrization of M
with respect to (u’) as (3.3). Then the Christoffel symbols I'};
with respect to (u?) satisfy

k _ ok
(3.9) rk=ry;
*f  of - k
. <auiauj ! aul> =2 T,
k=1
9gij G
(3.11) Biul] = Z (gu; T + gin))
k=1

where g;;’s are the components of the induced metric defined in

(3.4).

Proof. The first equality (3.9) is obvious from the definition
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(3.8) and the symmetricity of (g;;). Next, we prove (3.10). Since

P or\_ o jor o\ Jor o
Autoud’ dul /T Out \ Oud’ dul oul’ Ouiou!
_ g0 [/ of O*f
out ouwl’ Oulout

o, 0 JOf or\ [ 9 of
T oout oul \ Qud ot ouloui’ out
9915 0gji n *f  of
out  ou! ouwioul’ Out

_O9y 09 0 [Oof OFN _/Of &
out  Oul  Ouw \oul o oul’ Owi dut
_ 991 99ij T Ogii o*f af
out  Oul  Oul Ouidui’ Oul

we have
f OfN 1
uidui’ oul /2
2 Z 99p; 891%’ _ 99i5
ou’ 8u7 ouP

Ogp; 09y 0915\~ 5
Z glp <81ﬁ * oul B ouP - kZ:lgleij

k,p=1

out  Ouw ou!

(8%‘ Ogi;  0gij )
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Using this, we have

0gij _ 0 [Of OfN\ _/ &f of\_ [of &
Aul  Out \Out’ dui /T \ Ouldut’ dul out’ Ouloud

m

= ngjrh + ngny

proving (3.11). O

Flatness. We shall prove the following:

Theorem 3.13. Let (M,g) be a Riemannian manifold of di-
mension m (resp. pseudo Riemannian manifold of signature
(m —s,58)), and (U;ul,...,u™) a local coordinate system. As-
sume there exists an immersion f: U — R™ (resp. RT") into
the Euclidean space (resp. the pseudo Euclidean space) with the
same dimension m as M whose induced metric is g. Then the
Christoffel symbols FZ} with respect to the coordinate system (u’)
satisfy

ort.  art i
() ik E I Fl I Fl
8uk_8uj+ (ipjpk_ ﬁcpj)_o
p:l

(3.12)

holds for i,j,k,l = 1,...,m. Conversely, when U is simply
connected and (3.12) holds, there exists an immersion f: U —
R™ (resp. R™") such that the induced metric by f coincides with
the metric g.
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Lemma 3.14. Let f: U — R™ (resp. R™) be an immersion of

a domain (Usut, ..., u™) C R™, and set
of of
= =,..., = ): M, (R).
7 <8u1’ ’aum) v— (R)
Then F satisfies

1
3.13 OF _Fo; 0= B
(3.13) 90 = S = .
e

forj=1,...,m, where Fi’;- ’s are the Christoffel symbols of the

induced metric with respect to the coordinate system (u’). More-
over, the Christoffel symbols satisfy (3.12).

Proof. Problem 3-1. O

Lemma 3.15. Let A € M,,,(R) be a symmetric matrixz such that
the quadratic form x — 'xAx has a signature (s,m — s). Then
there exists a regular matriz P such that

—id, 0
tPJs,m—sP = A7 Js,m—s = ( 9] id. ) ;

where idy, is the k X k identity matrix and O’s are zero matrices.

Proof. By the assumptions, A has (m — s) positive eigenvalues
and s negative eigenvalues, and A can be diagonalized by an
orthogonal matrix Q:

L (A O
a=e(y e
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where A_ := diag(—a3,...,—a?), Ay = diag(a?,,,...,d2,)
and a;’s (j = 1,...,m) are non-zero real numbers. Let D :=
diag(ay,...,am) and P := D@, we have the conclusion. O

Proof of Theorem 3.13. The first assertion has been proved
in Lemma 3.14. We assume (3.12) holds for each i, j, k, | =
1,...,m, and fix Pp € U. We let A = (g;;(Po)), which is a
symmetric matrix such that the corresponding quadratic form
is of signature (m — s, s). Then there exists a regular matrix P
as in Lemma 3.15. Then by Theorem 2.5, there exists F: U —
M,,,(R) satisfying (3.13) with initial condition F(Pg) = P. We
set

wi=Y fyd!,  where F=(f,....fn)
j=1
Then by (3.9), we know that w is a vector-valued closed one

form. Hence by Poincaré’s Lemma (Theorem 2.6), there exists
a C*>°-function f: M — R7" such that df = w, that is,

0
a—lj;:fj (G=1,...,m).

We shall prove that this f is the desired immersion, that is, our
goal is to prove

gij:<fi7f_j> (i,7=1,...,m).

To do it, we set

Kij =gij — (Fi. £5) (.5 =1,...,m).
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So, by a choice of the initial condition, we have Exercises

(3.14) kij(Po) =0 (i,5=1,...,m). 3-1 Show Lemma 3.14.

3-2 Let M := Ry x R = {(u*,u?); u! > 0}, and consider a

Th 1 .11), it hol h
en, by (3.13) and (3.11), it holds that Riemannian metric g on M whose components are

8%

m . 2
(315 Z sz l+“ikjF£) (7’7.]712 17""m)' g11 :17 g12 :07 g22 = {Sﬁ(ul)} 3
k=1

where ¢: Ry — R, is a smooth function.
Let P € U and take a path v(¢) (0 < ¢ < 1) in U satisfying

7(0) = Py and v(1) = P. Then the functions &;;(t) satisfy a e Find a function ¢ satisfying (3.12) and t£%1+ p(t) = 0.

system of ordinary differential equations . . 9
e Under the situation above, find f: U — R® on an

d"fz m_m dul appropriate domain U on M such that the induced
/ Z Z fizkfl oy + K/k]Fﬂ o ’7) i (i, =1,...,m), metric coincides with g.
1=1 k=1
where v(t) = (u'(t),...,u™(t)). Since &i;(t) =0 (i, =1,...,m)

satisfy the equation with initial condition (3.14), uniqueness the—
orem implies that &;;(1) = k;;(P) = 0, proving the theorem.

Remark 3.16. As we see in the following section, the condition
(3.12) does not depend on choice of local coordinate systems.
We say a (pseudo) Riemmanian manifold (M, g) to be flat if
(3.12) holds on M.
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4 The Curvature Tensor.

Change of Coordinate Systems. Throughout this section,
we let (M, g) be a (pseudo) Riemannian m-manifold and take
a local coordinate system (U;u?,...,u™) on a neighborhood of
P € U. Choose another coordinate system (V;x!,... 2™) on a
neighborhood V' of P. Then the coordinate change

(4.1) x=(z',...,2™)

= oau(x) = (ul (2. 2™), ™ (2t a™))

is defined as a C°°-map between certain domains in R™. Since
the transformation (4.1) is a diffeomorphism, the inverse

(4.2) w=(u',...,u™)

= oax(u) = (o' (ul, . u™), 2™ (et ™))

is also C'°*°. Thus, the Jacobian matrix

oo
Ozt T Qg™ (81# )

J = . = oxe
durm durm a=L,..m
ot dam

09. July, 2019. Revised: 16. July, 2019
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is invertible on each point of the domain of u(x), and the Jaco-
bian matrix of the inverse map & = x(u) is obtained as

ost
Oul
oz
Oul

Oxt

81:”” :(8:”7) =J!
axm ou? a,i=1,....m

ou™

where the inverse matrix of the right-hand side is evaluated at
u(x), that is,

T Qx® Qut " Jut Oz

%@ = 5?, and =0
i=1

(43) 2 g g %

hold, where § denotes Kronecker’s delta.

Components of Vector fields and Differential forms. Let
X be a vector field on M. Then it can be expressed on coordi-
nate neighborhoods (U;u) and (V; ) as

m

- za va 0
X:ZIX out :ZX Oxo’

Since

0 " 9z 0 0 " out 9
(44) out = Ou' Oz° and Oz
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we have the following transformation formula for the compo-
nents of X:

m m ;
~ ox® . . out ~

4.5 X = - X" X' = @
(45) £ ut~ Ox®

=1 a=1
Thus,
Lemma 4.1. The components (g;j) and (gay) of the (pseudo)
Riemannian metric g with respect to the coordinates (ul, ..., u™)
and (z1,...,2™), respectively, are related as

. " out Oud
Gab = %wgij-
i,j=1

(4.6)

Moreover, the inverse matrices (g*) and (g°) of (9ij) and (Gab),
respectively, satisfy

Proof. By (4.4), we have

(0 N _Nowow (9 o
Gab = I\ pa’ gab ) ~ 18:10“ 0207\ 0wt Oui

ij=
m S
ou* ou?
= 2 Gra g
ij=1

proving the first assertion. The second assertion follows from
(4.3). O
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Corollary 4.2. The Christoffel symbols I'F. as in (3.8) with

ij

respect to the coordinate system (ul,...,u™) and the Christoffel
symbols I, with respect to (x',...,xz™) are related as
~. "L 0z | 0%uP "L out oul

ab ™ = OuF | Oz 0x® (O Oz Y

)=

Proof. The definition (3.8) and Lemma 4.1 yields the conclusion
through a direct computation. O

The following corollary is essentially a rephrasing of Theo-
rem 3.13. Namely the proof of the corollary gives an alternative
proof of Theorem 3.13.

Corollary 4.3. Let (M,g) be an m-dimensional (pseudo) Rie-
mannian manifold. Then, for each P, there exists a coordi-
nate neighborhood (U;sut,...,u™) of P such that the compo-
nents (gi;) of the metric g satisfy gi; = £0;; if and only if the
Christoffel symbols facb of any coordinate system (x',... z™)
satisfy (3.12).

Proof. Let (V;x',...,2™) be a coordinate system at P, and
denote the Christoffel symbol with respect to (z%) by I <. Con-
sider a system of partial differential equations

oOF
ox°
where (2,’s are matrices defined by (3.13) for {facb} and F =
(v1,...,0m). Then the integrability condition of (4.7) is equiv-
alent to (3.12) for the Christoffel symbols {f;b} satisfies (3.12).

(4.7)

:fﬂm
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That is, if {I’ .} satisfies (3.12), there exists a solution F (4.7)
with the initial value F(P) = Fp. In addition, if Fy is a regular
matrix, F is valued in GL(m,R).

Moreover, noticing F;b =TIt by there exists a vector-valued
function u = u(x) such that

du = i v dx?
a=1

because the right-hand side is a closed one form. Since F is
the Jacobian matrix of & — w, which is valued in GL(m,R),

u = (ul,...,u™) is a new coordinate system around P.
By Corollary 4.2, the Christoffel symbols with respect to
(u',...,u™) vanishes identically. This means that g;;’s are con-

stants because of (3.11). Since (g;;) is a constant matrix, a
linear transformation of the coordinate system yields the con-
clusion. O

The Curvature Tensor. Set
(4.8)

aplgz 8F/§j - o al'l Jal’l
o= 3o (e G 43 (s - 2,3)

for i,j,k,l =1,...,m, where Fk’s are the Christoffel symbols.
Obviously, it holds that

Lemma 4.4. The (pseudo) Riemannian manifold (M, g) is flat
if and only if, for each point P € M, there exists a coordinate
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system (u?) around P such that Riji (i,7,k,0=1,...,m) van-
1sh identically.

Here, the condition “there exists a coordinate system” in
Lemma 4.4 can be replaced by “for any coordinate systems”,
because of the following lemma:

Lemma 4.5. Let (x',...,2™) be another coordinate system,
and define Rapeq by (4.8) replacing I' with I', u with x. Then

T ut oud duk dut

Dz Ozb dxc dgd I
ik l=1

(4.9) Eabcd =

holds for each a, b, c, d=1,...,m

Proof. By tedious but simple computation, the conclusion fol-
lows. O

The relation (4.9) looks similar to (4.6), where the metric
g is a notion which is independent of choice of coordinates. In
fact, by (4.5) and (4.3), we have

Corollary 4.6. Let x, y, z and w € Tp M and write them by

m 7 a m
v=2 (au) y=2v (aw)

Jj=1

m 6 m
_ k(_~
TS (auk)P’ w=) v (au)

=1
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Then
(4.10) R(z,y,z,w) = Z w'yl 2Fw' R

irj, k=1

does not depend on choice of coordinates.
Thus, we can define a 4-linear map
R:TpM xTpM x TpM x TpM — R,
and
R:X(M)xX(M)xX(M) x X(M) — C*(M),

where C*° (M) is the commutative ring consists of C*°-functions
on M, and X(M) is the C°°(M)-module consists of smooth vec-
tor fields on M. In fact, for X, Y, Z, W, we define

R(X,Y,Z,W): M 5P — R(Xp,Yp, Zp,Wp) € R.

Then R is C°°(M)-linear in each entry, namely, for X, Y, Z
W e X(M) and f € C°(M),
(411) R(fX,Y,Z, W) =R(X, fY,Z,W) = R(X,Y, fZ,W)

— R(X.Y, Z,fW) = fR(X,Y, Z,W)

holds. We call this R the curvature tensor of (M,g). Theo-
rem 3.13 can be restated as following “coordinate free” form.

Corollary 4.7. The Riemannian manifold is flat if and only if
its curvature tensor vanishes identically.
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Covariant Derivatives. To define the curvature tensor in
the coordinate-free form, we introduce the notion of covariant
derivatives of vector fields.

For a vector field Y and tangent vector v € Tp M, we define
o) E AN )
k Y
S (9 Som)| (),
k=1 =1 P

where Y = Y7 V¥(9/0u’) and v = Y1, v(9/0u’)p, and
I'’s are the Christoffel symbols defined in (3.8).

m

(412) VpY =)

j=1

m

j7
Proposition 4.8. Assume M is a (non-degenerate) subman-
ifold of the (pseudo) Euclidean space R?TY, and take a vector
field X on M defined on a neighborhood of P € M. Then

VoX = [DyX]"

holds, where DyX is a directional derivative of R !-valued
function with respect to v, and [*]T denotes the tangential com-
ponent of it, as in (3.1).

Proof. Let f = f(u',...,u™) be a parametrization of M with
respect to the local coordinate system (u’) and we let

°f 17 S Of
[8ui8uj] _ZG”W'

k=1

Then by (3.10) and (3.4), we have

m m

> oGl = gull.

k=1 k=1
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Since (gi;) is a regular matrix, we have G¥;, = I}f;. In other
words,
82f T m . Bf
4.13 — = k=L
(4.13) [8u’5‘uﬂ } ; 7 Quk

holds. Thus, identifying 9/0u’ with f/0u’, we have

ar" f 17 &, Of of

Outuk — 4 guk
Applying this, the conclusion follows. O
Using covariant derivative, we obtain the bilinear
(4.14) V:X(M)xX(M)>(X,)Y)— VxY € X(M),

which is also called the covariant derivative, alternatively, the
Riemannian connection or the Levi-Civita connection.

Proposition 4.9. For each X, Y € X(M) and f € C*(M),

(4.15) VixY = fVxY,

(4.16) Vi fY = (X[)Y + [VxY,

(4.17) VxY - VyX = [X,Y],

(4.18) Xg(Y,2) = g(VxY.Z) + 9(Y,Vx 2Z),
where [, | denotes the Lie-bracket for vector fields.
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Proof. The first two assertions are direct conclusion of the def-
inition of V. The third assertion follows because I’ i’;» =T fi (cf.
(3.9)) The last assertion can be proved by

a .. i
angzj =>_ (9T + 9inT51)
k=1

as seen in (3.11). O

Proposition 4.10. For X, Y, Z and W € X(M), it holds that
(4.19) R(X, Y, Z, W) = g(VXVyZ - VyVXZ - V[}Qy]Z, W),
where R is the curvature tensor as in (4.10).

Proof. Denote the right-hand side of (4.19) by S(X,Y,Z, W).
Then by Proposition 4.9, it holds that

(4.192) S(fX,Y.Z,W) = S(X,[Y,Z,W) = S(X,Y, fZ,W)
S(X,Y,Z, fW) = [S(X,Y,Z,W).

Then by (4.19a) it is sufficient to show the conclusion for

R

(4.20) X = out’ oud’ ouk’ ou!
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In fact,

0 =, 0
vc‘)/&uﬂ'@:znjw’
=1

0 |9 0 .
Va/aukva/auj@ = Z 3 ’j? + 173V our Sl

_ Filj P il i

| Ouk Pkl gyl
and

g 0
{81# " ou ]

yield the conclusion. O

Ezxercises

4-1 Prove Corollary 4.2.

4-2 We consider a Riemannian metric g on a domain U C R?
with
g11 = go2 = €77, g12 = g21 =0,
with respect to the canonical coordinate system (u',u?),
where ¢ is a smooth function on U.

(1) Show that (U, g) is flat if and only if o is a harmonic
function, that is, it satisfies

(2) Compute R;jj; for

9 4
e’ = ;
T+ k@ + 7))
where k is a constant and (u,v) = (u!,u?) is the

canonical coordinate system on R2.
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5 Sectional Curvature.

Throughout this section, we let (M, g) an m-dimensional (pseudo)
Riemannian manifold, and V the covariant derivative defined in
(4.12).

Tensors. A correspondence S : M 5 P +— Sp of a point P
and a multi-linear map Sp: (TpM)* — R is called a (k-th order
covariant) tensor field or a tensor on M. For such a tensor field
S trivially induces a map

(5.1) S: (X(M))" > (X1,...,X,) = S(X4,...,X,) € F(M)

where X(M) is the set (C°°(M)-module) of C*-vector fields of
M, and F(M) is the set of real-valued function on M. The
tensor field S is said to be smooth of class C* if S(X1,...,X,)
as in (5.1) is of class C*° for an arbitrary Xi,...,X,.

Example 5.1. The (pseudo) Riemannian metric g is a smooth
tensor field.

Example 5.2. A smooth 1-form on M is a smooth, first-order
covariant tensor field on M.

We denote by

(5.2) r@r*M)y=rrmMme---T*M)

16. July, 2019. Revised: 23. July, 2019
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the set of p-th order covariant tensor fields on M. 7 The set
I' (®PT*M) is a vector space over R. Moreover, for each S €
'(@PT*M) and f € C°(M), fS = (P — f(P)Sp) is also
an element of I'(@PT*M). That is, ['(QPT*M) is a C°(M)-
module.

Lemma 5.3. Let S be a p-th covariant tensor field on M and
S: X(M)P — C°(M) the map induced by S as in (5.1) Then
for an arbitrary f € C°(M), it holds that

(5.3)  S(X1,..., fXj,...,Xp) = fS(X1,.. ., X ., Xp),
where X1, ..., X, € X(M).
Proof. For each P € M,

S(X1,. . f X5, X,)(P)

= Sp((Xl)P, .. .,f(P)(Xj)p,...,(Xp)p)
= f(P)Sp((X1)p, .-, (X)), ..., (Xp)p)
=(f9)(Xy,...,X,)(P). O

Proposition 5.4. A multi-linear map S (%(M))p — C°(M)
is induced from a certain S € T'(QPT*M) as in (5.1) if S is
C>(M)-multi-linear, that is, (5.3) holds for any f € C*°(M)
and X1, ..., X, € X(M).

"The symbol “®” in (5.2) means the tensor product. For example,

T*M ® T*M is a tensor product of the cotangent bundles, which is a

certain vector bundle over M. The notion I'(x) means the set of sections of
the vector bundle “x¥”. Anyway, we do not give a precise meaning of these

notations.
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Proof. Assume that (5.1) holds. We fix P € M and take a local
coordinate system (U;u!,...,u™) of M around P. According
to this coordinate system, we set X; = >)", £4(9/0u') (j =
1,...,p), where §§-’s are C°°-functions on U. Then by (5.1),

A~ 11 ’ipA a a
S(Xq,..., Xp) :Zgl & S(@u“"”’@ﬁ?)

holds, where the sum in the right-hand side is taken over i; =
1,...,m (j =1,...,p). This means the value of the left-hand
side at P is determined by &' (P), which depend only on (X;)p.
Hence, for each vy,...,v, € Tp M, we can define

Sp(v1,...,vp) == 8(X1,..., X,n)(P),

where X; is an arbitrary vector field on M such that X;(P) =
v;. Then S: P — Sp is the desired one. l

If S is induced from a tensor field S , we say that S itself is
a tensor field. From now on, we denote S in (5.1) by S for a
simplicity. Then, for each S € I'(®PT* M), the C*°-multi-linear
map

(5.4) S: (X(M))" — (M)
is induced.

Taking a local coordinate system (U;u?,...,u™) on M, we
set

0 0 . .
(55) Sil,...,ip =5 <(‘3uil g auip> (le s lp = L... ,m),
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which are called the components of S with respect to the local
coordinate system (u’). Let {Sq,.... q, } be the components of S
with respect to another coordinate system (z%). Then it holds
that

T oun Ou'r
5.6 Sarsna, = oS
( ) 1s--+3Up ‘ Z ) axa axap 1, slp
11y-eslp=

Proposition 5.5. Let S: (%(M))p — C®°(M) be a multi-linear
map, and set S;, . i, by (5.5). Then S is a tensor field on M

if and only if it satisfy (5.6) for an arbitrary coordinate change
(%) = (u?).

Proof. Problem 5-1. O

The Curvature Tensor. Let V be the covariant derivative
on (M, g), as defined in (4.12), which is considered as

V:X(M)xX(M)>(X,)Y)— VxY € X(M).
Remark 5.6. The tri-linear map
D: (2(M))* 3 (X,Y,2Z) = g(VxY, Z) € C=(M)

is not a tensor field. In fact, (4.16) means that D(X, fY, Z) and
fD(X,Y, Z) may not coincide. But for a fixed Y € X(M),

DY : X(M) x X(M) 3 (X, Z) — g(VxY, Z) € C(M)

is a tensor because of (4.15).
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As seen in the proof in Proposition 4.10, the 4-linear map
R: (X(M))" = (M) defined by

(5.7) R(X,Y,Z,W) := g(VxVyZ - VyVxZ - VixyZ, W),

where [X,Y] denotes the Lie bracket of the vector fields, is a
tensor field, which we call the curvature tensor, or the Riemann-
Christoffel curvature tensor of (M, g).

Proposition 5.7. The curvature tensor R has the following
symmetricity:

(1) R(Y, X, 2,W) = —R(X,Y, 2, ).

(3) R(X,Y,Z,W)=R(Z,W,X,Y).

(4) R(X,Y,Z,W)+ R(Y, Z,X,W) + R(Z, X,Y,W) = 0,
where X, Y, Z and W are vector fields.
Proof. The equality (1) follows from the property of the Lie
bracket [Y, X] = —[X,Y]. The equality (4) can be proved by
the property (4.17) and the Jacobi identity

(X.Y1.2) + [1¥, 2. X] + [12.X],¥] = 0

for the Lie bracket. The property (2) can be shown by applying
(4.18) and (4.17) (Problem 5-2). The property (3) follows from
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(4), (1) and (2). In fact, summing up

R(X,Y,Z,W)+ R(Y, Z,X,W

Y+ R(Z,X,Y,W
RY,Z,W,X)+ R(Z,W,Y, X) +
)+
+

RW,Y,Z, X
R(X,Z,W,Y
RY,W,X,Z

’

R(Z,W,X,Y)+RW,X,Z,Y
R(W,X,Y,Z) + R(X,Y,W, Z)

7

)=
),
) =
) =0,

(3) follows. O

Proposition 5.8. Assume two tensors Ry and Ry € I'(@*T* M)
satisfy the symmetricity as in Proposition 5.7. If

Rl(XaKKX) :RQ(vaaKX>
holds for all X, Y € X(M), then Ry = Rs.

Proof. Expanding

Ri(X +sZ,)Y +tW,)Y +tW, X + sZ)
= Ro(X +5Z,Y +tW,)Y +tW, X + s2),

we have the conclusion from the coefficients of st. O

Sectional Curvature.

Lemma 5.9. Let R be the curvature tensor of a (pseudo) Rie-
mannian manifold (M, g). Then, for each P € M,

R(v,w,w,v)
g('U, U)g(wa w) - g(”? w)2

(v,weTpM)
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depends only on the 2-dimensional subspace of Tp M spanned by
{v,w} whenever

(5:8) 9(v, v)g(w, w) — g(v, w)* # 0.

Proof. Set
(z,y) = (v,w)A,

where A € GL(2,R). Then

R(z,y,y,x) = (detA)QR('u w, w,v),

9(@,2)g(y,y) — g(z,y)* = (det A)*(g(v, v)g(w, w) — g(v, w)?).

Hence the conclusion follows. O

Remark 5.10. When g is positive definite (i.e., (M, g) is a Rie-
mannian manifold), (5.8) holds if and only if v and w are lin-
early independent. On the other hand, when g is indefinite, the
left-hand side of (5.8) may vanish even if v and w are linearly
independent. In this case, (5.8) holds if and only if Span{v, w}
is a non-degenerate subspace of Tp M.

Definition 5.11. For a 2-dimensional non-degenerate subspace
IIp C Tp M, we set

R(v,w,w,v)
g(v, 'v)g(w, w) - g(v, w)Q) ’

K(Hp) =

where {v,w} is a basis of IIp. We call it the sectional curvature
at HP.
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Remark 5.12. The set of 2-dimensional subspaces on an n-dimen-
sional vector space V' can be endowed with the structure of a
compact (2n — 4)-dimensional manifold, denoted by Gry(V),
which is called the 2-Grassmanian manifold over V. So, when
(M, g) is a Riemannian, the sectional curvature can be consid-
ered as a smooth map

K: Gro(TM) := | ] Gra(Tp M) — R.
PeM

Example 5.13. Let (M,g) be a 2-dimensional Riemannian
manifold. Since Grz(TpM) consists of one point, the sectional
curvature K can be regarded as a function defined on M itself.
In this case, the sectional curvature is written as

E(E,G, —2F,G, + G?)

K= 4(EG — F?)?
| F(E.G, ~ B,Gy — 2B,F, ~ 2F,G\, + 4F,F,)
A(EG — F2)?
| G(B.Gy —2E.F, + E}) By —2Fu + Guu
A(EG — F?)? 2(EG—F?)

where (u',u?) = (u,v) is a local coordinate system and

E = g11, F = g12 = go1, G = goo.

Constant Sectional Curvature. A Riemannian manifold
(M, g) is said to be a space of constant sectional curvature if
K is constant everywhere.
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Proposition 5.14. A (pseudo) Riemannian manifold (M, g)
has constant sectional curvature k if and only if its curvature
tensor R satisfies

(59) R(Xv Yv Za W) = k(g(Xa W)g(Y7 Z) - g(Xa Z)g(K W))

Proof. If R satisfies (5.9), K = k is constant obviously. Con-
versely, assume K = k is constant. Then (5.9) holds for Z =Y,
W = X. Since the right-hand side has the symmetric property
as in Proposition 5.7, Proposition 5.8 yields (5.9). O

Example 5.15. The curvature tensor of the Euclidean space R™
vanishes identically, because R vanishes identically. The covari-
ant derivative of R™ is identified with the directional derivative
D. This means that

DxDyZ — DyDxZ — Dixy1Z = O
holds for vector fields X, Y and Z.
Example 5.16. Let £ > 0 and

S™ (k) = {:c € R (,2) ;} .

As seen in Example 3.3, this is an n-dimensional submanifold
of R™*! and then is a Riemannian manifold with the induced
metric from R"T1.

We compute the sectional curvature S™(k): The unit normal
vector of S”(k) at « is m := x/v/k. Then, regarding vector field
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on S"(k) as a vector field of R"*! along S™(k), we have by
Proposition 4.8

VyZ =[DyZ" =DyZ — % (Dy Z,x) x
1

1
ﬁY (Z,x)x + 7 (Z,Dyz)x

1 1
=DyZ - —=Y{Z x)xr+ —
vAmpremet g

1
=DyZ+—(Z,Y)x,

Vk

where we used the relation Dyax = Y. Using this relation, we
can show that the curvature tensor R satisfy

=Dy 7 —

(Z,YYx

R(X.Y,Z,W)
— (DxDyZ — DyDxZ — Dix ) Z, W)
+E(9(X,W)g(Y, Z) — g(X, Z)g(Y, T)).

Hence by Proposition 5.14, we obtain that the sectional curva-
ture of S™(k) is k.

Example 5.17. Let k is a positive constant and

1
H" (k) := {:c eRMM . (x,x) = —%,mo > 0} ,
where £ = (z%,...,2"). Then H"(—k) is a space-like hyper-
surface in the Lorentz-Minkowski space R?H, as seen in Exam-
ple 3.5, called the hyperbolic space. Since H™(—k) is a space-like
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hypersurface, the induced metric gives a Riemannian metric,
and then H™(—k) is a Riemannian manifold.

By the completely same method as in the previous example,
one can show that H™(—k) has constant sectional curvature —k.
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Ezxercises
5-1 Prove Proposition 5.5.
5-2 Show (2) in Proposition 5.7.

5-3 Compute the sectional curvature of a Riemannian 2-manifold
(M, g) with

4
g11 = g22 = 0+ k(2 + 09))2’ g12 = g21 =0,

where (u,v) = (u!,u?) is a local coordinate system.
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6 Spaces of Constant Sectional Curvature.

Orthonormal Frame and Connection Forms. Let (M, g)
be an orientable Riemannian m-manifold, and (U;u?, ..., u™) a
local coordinate neighborhood.

Lemma 6.1. There exists a m-tuple of vector fields {ey, ... ,emn}
on M which forms a positively-oriented orthonormal basis of
Tp M for each P € U.

Proof. The procedure of the Gram-Schmidt orthogonalization
works for the m-tuple of vector fields {9/0u?}-; on U. O

We call such a m-tuple {e;}7; a positively-oriented or-
thonormal frame field, or a frame field for short, on U.

Lemma 6.2. Let {e1,...,ey} be an orthonormal frame field
on U C M. Then there exist C*-differential 1-forms w] (i,j =
1,...,m) satisfying

(6.1) Vxei=>» wl(X)e; (i=1,...,m),
j=1

(6.2) w] = —w} (i,j=1,...,m)
for an arbitrary vector field X on U, where V denotes the co-

variant deriwative (4.12).

Proof. We set ‘
w)(X) =g (Vxe; e;)

23. July, 2019.
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for X € X(U). So by (4.15), w/(fX) = fw!(X) holds for
f € C®(U). Hence w’(X)(P) depends only on Xp because
of Lemma 5.3. Then each wg defines a 1-form on U. Smooth-
ness of wg is obvious. Since {e;} is an orthonormal basis, (6.1)
follows.

Moreover, since g(e;, e;) = d;; is constant for each ¢ and j,
(4.18) implies

0= Xg(ei,e;) =g(Vxei ej)+g(e;,Vxe;)

wa(X)ekyej> +9 (&wzwf(X)ek)
k=1

k=1

<

Il
)
-~

M-

(WE(X)s + wh (X)di) = w](X) + wi(X).

2

=
Il

1

Hence (6.2) follows. O

We call {w/} in Lemma 6.2 the connection forms with re-
spect to the frame {e;}.

By (6.2),
wi Wy
(6.3) wi= | . satisfies w +'w = O,
Wi Wi

in other words, w is a skew-symmetric matrix-valued 1-form.

Gauge transformations and the Curvature Form. Let
{e1,...,en} and {fy,..., f,,} be two positively-oriented or-



63 (20190723) MTH.B406; Sect. 6

thonormal frames on U C M. Then there exists a smooth map
G = (Gi;): U = SO(m) such that®

6.4) (e1,....em)=(f1,.., f,)G

= <ZG1afm...,ZGmafa> :
a=1 a=1

Let w = (w!) (resp. @ = (@%)) be the connection forms with
respect to the orthonormal frame {e;} (resp. {f,}). The

Lemma 6.3. Under the situation above, it holds that
(6.5) w=G1dG+ G wG.
Proof. By definition,
Vel ...,em) =(€1,...,en)w, and
V(finfn) = fw
hold. Hence, by (4.16), it holds that

(f17"'7.f ) :(1;-- em)Gw

(fl?"‘ ((61,.. G)
( (e1 en)) G+ (e1,...,en)dG

8As defined in Section 1, SO(m) = {4 € M (R); 44 = A'A =
id, det A = 1} denotes the special orthogonal group. A map G: U — SO(m)
is said to be smooth (of class C°) if it is of class C°° as a map into M,, (R),

the set of m x m-real matrices, which is identified with R,
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=(e1,...,en)wG+ (e1,...,e,)dG
=(e1,...,en) (WG +dG),

where Vv means a 1-form X — Vxw. Since eq,...,e,, are
linearly independent, the conclusion follows. O

The formula (6.5) is called the Gauge transformation of the
connection forms.

Definition 6.4. The curvature form with respect to the frame
field {e;} is a skew-symmetric matrix-valued 2-form

k=1

(6.6) R =dwotwhw= (dwf +wawi>
Jj=1

z7:7

Lemma 6.5. Under the transformation as in (6.4), the cur-
vature form £2 and §2 with respect to the frame field {e;} and
{f.}, respectively, satisfy

2 =G6710aG.
Proof. Problem 6-1.

Lemma 6.6. The curvature form §2 = (£27) with respect to the
frame field {e;} satisfies

Qg(X7 Y) = R(X7 Y, eivej)v

where R is the Riemann-Christoffel curvature tensor, and X, Y
are vector fields.
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Proof. Since {e;} is an orthonormal basis, it holds that
9(Vxej er) = Xg(ej,er) —g(e;j, Vxer) = —g(e;, Vxex)
holds for j,k =1,...,m. Then we have

DX, Y) = dwl (X,Y) + Y (Wi (X)wh (V) — wf (V)wi(Y))

k=1
=Xw!(¥) - Yol (X) - W/ ([X,Y])
S (WXl (V) = wh(V)wl (V)
k=1

=Xg(Vvye; e;) —Yg(Vxei e;) — g(Vixyie: e;))
+ Z( (Vxei,er)g(Vyey, e;) — g(eriaek)g(vXekaej))

=9(VxVyei, e;) +9(Vye;, Vxe;)
- 9(VyVxei, e;) —g(Vxei, Vye;) — g(Vix yviei e))

- Z( (Vxei er)gler, Vye;) —g(Vyei er)g(er, Vxej))

:R(X7Keivej)u

where we used the relation

Zg(vaek)g(waek) :g(’U,’lU). O

Space of Constant Sectional Curvature. The goal of this
lecture is to prove the following
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Theorem 6.7. Let U C R™ be a simply connected domain
and let g be a Riemannian metric on U with constant sectional
curvature k. Then there exists a local diffeomorphism

FrU — M™(k)

such that the Riemannian metric g coincide with the metric on
U induced from M™(k) by f, where

S™(k) (when k > 0, cf. Example 5.16),
M™(k) = R™ (when k = 0, the Euclidean m-space),
H™(k) (when k < 0, cf. Example 5.17).

Remark 6.8. The theorem can be generalized for simply con-
nected Riemannian manifolds (M, g) of constant sectional cur-
vature. Moreover, one can show that f is injective. Hence, we
can say that a simply connected Riemannian m-manifold (M, g)
can be identified as a subset of M™ (k). In particular, if (M, g)
is complete, it coincides with M™ (k).

Proof of Theorem 6.7 (for the case k = 0): This is an al-
ternative proof of Theorem 3.13 in Section 3. Take an orthonor-
mal frame field {ey,..., e, } on U, and let w be the connection
form with respect to the basis. Fix a base point Py € U, and
consider the system of differential equations

OF

CRO =

= Fw;, FPo)=id (G=1,...,m),

where

- oo ().
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By Lemma 6.6, the assumption & = 0 implies

0 0
0= (R (aa)>m

:(d(.u—l—t.u/\w)<a 8)_8wj Ows

0w 0w ) T dw  gw Wi T @i

Hence by Theorem 2.5, there exists a unique solution F of (6.7).

Moreover, since w; is skew-symmetric because of (6.3), the so-

lution gives a smooth map F: U — SO(m). Decompose F into

the column vectors as F = (@1, ...,o,). Since F is an orthog-

onal matrix, {z;(P)} is an orthonormal basis at each P.
Define an R™-valued 1-form

$ = Z ( gf:wk> dul7 gf =g (W7ek> )
k=1

i=1

where {e;} is the orthonormal frame on U we took in the be-
ginning of the proof. Then ¢ is a closed on U. In fact, by (4.18)
and (4.17), we have

0 i, U 0 0 X
0 (Zgi$k> :’;(8uﬂ'g(8ui’ek> +giwk>

k=1
- 0 T
k=1
307 ) os 3o (S () )
k=1 k=1 =1
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k=1

= Z lg (vwaui’ek> +Z(wk+wl) <8 J) gz+ Lk
k=1 “ 1=1
" 0

2o (Cagres)| =

Hence by (4.17), we have

Jui <Z gi wk) = ( gﬂk) )
k=1 k=1

that is, dp = 0. Hence by Poincaré’s lemma, there exists
f: U — R™ satisfying df = ¢. This f is desired one. To
show this, it is sufficient to show

(6.9) df (e;) = x;, (j=1,...,m).
In fact, if (6.9) holds,
g(ei e;) = bi = (xs, xj, =) (df (€:),df (e5), )

and then the induced metric coincides with g. We show (6.9):

i=1

df(ej) = wl(ej) =) ( gf%) du’(e;)
k=1



69 (20190723) MTH.B406; Sect. 6

Z g <8ui’ek> du'(ej)xs

i,k=1

E

k=1 \i=1 k=1
Here, we used the formula

m

Zdui(v)% =v. O

i=1

Proof of Theorem 6.7 (for the case k > 0): Since k > 0,

there exists a real number ¢ such that k& = c¢2. Taking the
orthonormal frame field (eq,...,e;,) on U, we set
—ctg.
(6.10) Wj = ( 0 Cgﬂ) ,
cg; wj

for each j = 1,...,m, which is an (n 4+ 1) x (n + 1)-skew sym-
metric matrix-valued function, here

gl g(@/@uj,el)
(6.11) g, = (: ;) = :
95 g(0/0u!  en)

and w; is as in (6.8). By the assumption, (5.9) holds. Hence
one can show easily that
0w; 0w;

out Oul

—|—wi(i:j — (.:.7](;.71 =0

Zg <Z dui(ej)aczi’ek> T = Zg(ej,ek)mk = ;.
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for each 7,7 = 1,..., m. Hence there exists a smooth map
F = (xo,Z1,...,Lm): U —=SO(m+1)
satisfying
% =Fw;  (
with F(Pp) = id. Then

is the desired map. In fact,
df(ej) ==;  (j=1,...,m)

holds. O

Proof of Theorem 6.7 (for the case k < 0): Since k < 0,

there exists a real number ¢ such that k& = —c?. Taking the
orthonormal frame field (eq,...,e;,) on U, we set
t
(6.12) W= ( 0 Cgﬂ),
cg; wj
for each j = 1,...,m, which is an (n+1) X (n+1)-matrix-valued

function, here

gl g(a/auj,el)
(6.13) g; = (; ;) = ;
95 9(0/0ud , enm)
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and wj is as in (6.8). Since
ij‘ftij:O (jil,,m)
holds, where Y := diag(—1,1,...,1). This implies that there

exists

F:U —SO(m+1,1),

where

SO(m+1,1) =
{a = (a4i5)i,j=0,....m € Mp(R); taYa=Y,deta=1,a9 > 0.}

Then there exists F: U — SO(m + 1) satisfying

OF .
with F(Pg) = id. Then
1
f = —X9

is the desired map. O
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Ezxercises

6-1 Prove Lemma 6.5.

6-2 Prove Theorem 6.7



